Victory by KO: Attacking OpenPGP Using Key Overwriting’

Lara Bruseghini
ETH Zurich and Proton AG
larabr@protonmail.com

ABSTRACT

We present a set of attacks on the OpenPGP specification and im-
plementations of it which result in full recovery of users’ private
keys. The attacks exploit the lack of cryptographic binding between
the different fields inside an encrypted private key packet, which
include the key algorithm identifier, the cleartext public parameters,
and the encrypted private parameters. This allows an attacker who
can overwrite certain fields in OpenPGP key packets to perform
cross-algorithm attacks, causing a user’s software to, for example,
misinterpret an ECC private key as being a DSA key. It also al-
lows an attacker to replace the legitimate public parameters with
adversarially chosen ones, e.g. allowing them to select the DSA
group. We refer to this class of attacks as Key Overwriting (KO)
attacks. We provide a detailed analysis of the vulnerability of differ-
ent OpenPGP libraries to KO attacks, showing in particular that in
some cases additional key validation steps performed by libraries
that should prevent the attacks in fact allow variant attacks. We
also assess the applicability of KO attacks in the context of specific
OpenPGP-based applications that reflect different threat models.
Finally, we explain how KO attacks can be completely prevented
(and the need for key validation obsoleted) at the OpenPGP speci-
fication level by expanding the existing proposal of using AEAD
schemes for key packet protection to have all the security-relevant
public fields included as Associated Data.

1 INTRODUCTION

OpenPGP (7] is a specification that was originally developed in
the 1990s to secure general electronic communication and data.
Nowadays, the protocol is mostly known for email encryption, but
it is also widely used to secure storage and for data authentication
through signatures. Starting with [35] in 1999 and continuing up to
the present day [2, 11, 21, 34], OpenPGP has been heavily criticized
on security and usability grounds. The security concerns stem
from the complexity of the employed data format and from its
reliance on cryptographic algorithms and constructions which are
considered outdated and not provably secure. In addition to these
purely technical concerns, securing emails using OpenPGP can
entail significant usability issues for the average user [31, 32, 35].

However, various email applications now offer a more seamless
user experience by making use of OpenPGP “under the hood”, and
there is an active ecosystem of developers, libraries and applications
using the specification today. Indeed, OpenPGP remains one of the
most widely used specifications for email encryption, and there
are ongoing efforts to specify a new version of it [19, 20], aiming
to update its underlying cryptographic primitives. This continued
relevance justifies the ongoing analysis of OpenPGP.

Analysis of email systems is traditionally conducted in a weak
threat model, where interactions with mail servers are limited to

“To appear in ACM CCS 2022.

Kenneth G. Paterson
Applied Cryptography Group, ETH Zurich
kenny.paterson@inf.ethz.ch

Daniel Huigens
Proton AG
d.huigens@protonmail.com

downloading and sending messages, and remote parties do not get
to communicate directly with cryptographic software, but where
that software is only used locally to decrypt/encrypt or sign/verify
some emails. However, the use cases for OpenPGP have evolved,
and application scenarios have changed over the past 20 years. In
particular, we now see widespread use of cloud-based storage, in-
browser and server-provided encryption services, and automated
cryptographic processing by those services. Hence, modelling as-
sumptions that were reasonable in the past need to be challenged
and security requirements reassessed. Moreover, the OpenPGP
standard is very flexible and does not target the specific use case
of securing email. So, the OpenPGP specifications and its imple-
mentations cannot settle for weak adversarial models relevant for
traditional email deployments, but should instead aim to defend
against standard classes of attack.

In this paper, we focus on the consequences of storing encrypted
private OpenPGP keys in insecure storage, and show how an at-
tacker with write access to the corresponding encrypted key packet
can tamper with it and extract the private key once the modified
key packet is used. We also outline a conceptually simpler attack
that allows accessing sent messages. The insecure storage threat
model is relevant to some modern cloud-based applications using
OpenPGP. For example, ProtonMail' allows users to access their
data from multiple devices by storing each user’s private key in
encrypted form on the ProtonMail servers, with the encryption
passphrase being unknown to the servers.

The aforementioned Key Overwriting (KO) attack vector is not
new: as early as 2001, Klima and Rosa [17] showed how to target
DSA and RSA keys in this way. Their work led to key validation
being introduced in some implementations of OpenPGP, as well
as specification changes to prevent the attack for RSA keys. We
revisit the core idea of [17] in the context of modern applications
of OpenPGP where, for example, a server may have the capabil-
ities needed to carry out a KO attack and should be considered
untrusted.” We perform a systematic exploration of KO attacks
and show how they can be used to extract private keys for any
supported algorithm (i.e. EADSA, ECDSA, ECDH, RSA, DSA and El-
Gamal). The widespread applicability arises from a cross-algorithm
attack: the OpenPGP specification does not include cryptographic
mechanisms that allow systematic detection of certain types of
private key packet corruption, and does not require that the private
key be cryptographically bound to its type. This means that the se-
curity of any key type is reduced to the security of the weakest key
type that has interchangeable private parameters. Specifically, since
we provide efficient attacks for both DSA and ElGamal keys, we
obtain efficient attacks for the other discrete logarithm key types,

Uhttps://protonmail.com/
Indeed, not requiring trust in the server for security is part of the advertised ap-
peal of some cloud-based applications, see for example https://protonmail.com/blog/
protonmail-threat-model.

https://protonmail.com/
https://protonmail.com/blog/protonmail-threat-model
https://protonmail.com/blog/protonmail-threat-model

namely EADSA, ECDSA and ECDH keys. We also provide RSA-
specific attacks, both for the signing and encryption settings; these
attacks require the use of non-CRT-based private key operations.’
We stress that KO attacks assume that users (and the applications
they use) are not careful in constantly checking the fingerprints of
their own keys (and instead trust the keys if they can be decrypted
with the user’s passphrase, for example) - such vigilance would
prevent the attacks.”

As mentioned above, some OpenPGP libraries carry out key
validation steps before using keys. The steps are not specified in
the OpenPGP specification, and so are implementation- as well
as algorithm-specific. In principle, proper key validation would
prevent our attacks, and so we evaluate how key validation is carried
out in different OpenPGP libraries and to what extent it hinders
our attacks. We find significant diversity in how key validation is
performed - some libraries do none, while others are quite thorough.
Nevertheless, we also show that, in several cases, improper key
validation in combination with key overwriting opens up a new
class of attack which we call a Key Overwriting Attack Exploiting
Key Validation (KOKV attack). Such an attack can also result in
private key extraction.

To make our attacks concrete, we show how the attacks described
above in the context of OpenPGP libraries can be realized for two
specific OpenPGP-based applications making use of those libraries:
FlowCrypt and ProtonMail. Finally, we also consider immediately
deployable and longer-term countermeasures to KO (and KOKV)
attacks: the former simply demands that implementations do care-
ful key validation, while the latter relies on AEAD encryption to
protect private keys. Following our disclosure, the long-term solu-
tion has been incorporated in the draft revision of the OpenPGP
specification [20].

Vulnerability Disclosures. We contacted the OpenPGP Working
Group as well as the maintainers of all the libraries reviewed in
this paper regarding our attacks between November 2020 and Janu-
ary 2021. The OpenPGP.js and gopenpgp libraries have since been
patched to perform algorithm-specific parameter checks as part
of key decryption.” RNP also shipped full attack countermeasures
in their recent v0.16 release.” GnuPG and Sequoia do not plan to
implement any changes: the GnuPG developers believe that users
should not rely on the security of the key encryption mechanism
when storing or transferring the keys (and instead e.g. send keys
encrypted in a proper OpenPGP message), while the Sequoia devel-
opers consider key storage attacks as out of scope for their threat
model. At the application level, both FlowCrypt and ProtonMail
have been updated to rely on secured versions of their underlying
OpenPGP libraries (OpenPGP.js and gopenpgp). Hence, at the time
of writing, the application-level attacks described in Section 4 are
no longer possible.

3RSA private keys should not be convertible to the other types, since RSA keys contain
multiple private parameters but all the other key types contain only one parameter.
Hence, we attack RSA private keys separately.

4We also assume that the user has picked a strong enough key passphrase, otherwise
the attacker could simply run a fast dictionary attack to decrypt the key [24].

5See https://github.com/openpgpjs/openpgpjs/pull/1116 and https://github.com/
ProtonMail/go-crypto/pull/59.

©See https://github.com/rnpgp/rnp/commit/f63f9849cc2cedb06ch35eesf2fb0d919bc2e6da.

Related Work. As noted above, the idea of long-term private key
compromise through overwriting of the encrypted key was origi-
nally presented in [17], with attacks targeting RSA and DSA keys
showing how to corrupt the victim’s encrypted private key to then
recover the secret exponent once the corrupted key was used for
signing. The RSA attack exploited a weakness in the OpenPGP
key encryption mechanism, and the OpenPGP specification was
changed in RFC 4880 [7] to fix the issue by introducing a new in-
tegrity mechanism (see comments about string-to-key usage 254
in [7, Section 5.5.3]). The DSA attack exploited a different prob-
lem: the attacker does not tamper with the encrypted data, but
rather with the cleartext values included alongside it inside the
key packet; [17] showed how a signature generated with such a
corrupted key could leak the DSA secret used.

A significant number of other papers have considered different
security aspects of OpenPGP. A particular focus has been chosen-
ciphertext attacks (CCA) against OpenPGP’s message encryption
construction. Nguyen [26] pointed out that RSA and ElGamal en-
cryption do not achieve CCA security as they both use PKCS#1 v1.5
padding [15], which is vulnerable to Bleichenbacher’s attack [4].
Other works showed how messages could be recovered by exploit-
ing some oracles exposed when processing unauthenticated data in
non-constant-time [23, 25] or by tricking the victim into sharing the
seemingly-random decrypted data [13, 16]. The EFAIL attack [28]
showed how plaintext could be exfiltrated by corrupting encrypted
messages and exploiting the mishandling of integrity checks by
applications. None of this work targets private key recovery. The
recent paper [6] focuses on the insecurity of EIGamal encryption
in OpenPGP implementations. Interestingly, it considers insecure
interactions between different implementations of the ElGamal
algorithm, whereas we consider cross-algorithm rather than cross-
implementation attacks.

Paper Structure. We provide background information on OpenPGP
in Section 2. In Section 3 we describe our KO attacks, by present-
ing the theoretical details and then assessing the status of some
popular OpenPGP libraries with respect to our attacks. In Section 4
we review the impact and practicality of the attacks in the context
of OpenPGP-based applications, reflecting different threat mod-
els. Section 5 discusses short-term and long-term countermeasures
against our attacks while Section 6 contains our closing remarks.

2 BACKGROUND ON OPENPGP

The OpenPGP specification aims to provide confidentiality and
authenticity for electronic communications: its function is to “pro-
vide data integrity services for messages and data files” [7]. It is
widely used as an email encryption standard, but it is also a popular
solution to secure data at rest.

The OpenPGP specification was published in 1998 as RFC 2440 [8],
later superseded by RFC 4880 [7]. This last RFC is complemented
by RFC 6637 [14] which adds support for Elliptic Curve cryptog-
raphy. Since 2015, a new version of the standard has been under
development, with most of the changes proposed as part of the
draft RFC 4880bis [19]. The OpenPGP Working Group was recently
reactivated in the IETF and is chartered to complete the work on

https://github.com/openpgpjs/openpgpjs/pull/1116
https://github.com/ProtonMail/go-crypto/pull/59
https://github.com/ProtonMail/go-crypto/pull/59
https://github.com/rnpgp/rnp/commit/f63f9849cc2cedb06cb35ee8f2fb0d919bc2e6da

a new version of the standard. At the time of writing in October
2021, the work to revise the specification is ongoing.”

Draft RFC 4880bis. Besides updating the cryptographic algo-
rithms used, the RFC 4880bis draft introduces new features, such
as Authenticated Encryption with Associated Data, support for
additional elliptic curves, and a new (version 5) key format. Even
though these changes have not been standardized yet, many im-
plementations have started to support them. In this paper we will
focus on the draft specification RFC 4880bis-10 [19]%. Note that all
the issues presented in this paper also affect the standard specifi-
cation (except for the attacks targeting EADSA keys, which were
introduced in RFC 4880bis).

Examples of OpenPGP-based Applications. OpenPGP enables email
encryption, and it is supported by many email clients either natively
or via plugins. For instance, Mozilla Thunderbird has recently added
(experimental) native support for OpenPGP encryption; FlowCrypt
and Mailvelope are browser extensions that integrate OpenPGP en-
cryption in a number of third-party email services, including Gmail.
In another deployment model, ProtonMail is an email provider that
offers out of the box end-to-end encryption to its users using the
OpenPGP specification. This makes the service interoperable, al-
lowing secure communication with third-party email addresses.
Additionally, OpenPGP is employed in backup solutions to secure
files at rest. It is also used in settings that solely require authenticity
services. For example, the Debian package manager aptitude (apt)
uses OpenPGP signatures to verify the legitimacy of packages being
distributed. Similarly, git commits can be signed using OpenPGP
keys to identify the author of the code and prevent forgeries.

Supported Cryptographic Functions. OpenPGP specifies methods
to encrypt and sign messages, relying on long-term keys for au-
thentication. It also supports certification functions in order to help
confirm the identity of the user bound to a given key based on the
“web of trust”.

For encryption, a message is always encrypted symmetrically
with a session key, which in turn is encrypted to a public key or
using a key derived from a passphrase. Historically, symmetric
encryption relied on the CFB mode of operation. To protect the in-
tegrity of the plaintext, RFC 4880 introduced an optional mechanism
called Message Detection Code (MDC). The MDC is essentially a
SHA-1 hash of the plaintext that is appended to the plaintext packet.
Support for authenticated encryption (AEAD) primitives was intro-
duced in [19]. This draft also makes the MDC mandatory when not
using AEAD.

User IDs and the Web of Trust. OpenPGP users are identified by
“user IDs”, which typically contain an email address. Zero or more
User IDs can be attached to a given key, but there is no built-in
system for identity verification; it is ultimately up to the individual
users to decide whether a given key belongs to the declared entity.
To help determine the authenticity of the stated user IDs, other

"The latest progress can be determined from https://datatracker.ietf.org/wg/openpgp/.
S8REC 4880bis was the latest draft available when the majority of this work was being
carried out. The OpenPGP Working Group has since started a new document, named
crypto-refresh [20], which is set to incorporate most of the changes proposed in
RFC 4880bis. The content of this paper does not apply to the latest crypto-refresh draft
(version 04), which was updated to address our attacks following our disclosure.

users are expected to certify entities who they know own a given
key. Anyone can endorse such an association by issuing a third-
party certification signature over the key and the relevant user
ID. In principle, this form of trust is transitive, and the resulting
network is referred to as the web of trust.

Packet and Message Structure. OpenPGP uses a packet based for-
mat: an OpenPGP message is made up of concatenated and nested
packets of the form tag||length||body. The tag field identifies the
packet type, while the length field specifies the size of the body in
octets. The content of the body is specific to each packet type. There
are 18 different packet types which can be combined in several ways,
even though not all combinations are meaningful. Long-term keys
are also made up of multiple packets.

Signatures. OpenPGP signatures are encoded using the Signa-
ture packet type, which has different uses depending on the kind
of data being signed [19, Section 5.2]. Aside from guaranteeing
the authenticity of OpenPGP messages, this packet type is used
for certification of keys and users, but also to augment keys with
algorithm preferences and other features.

A Signature packet is made up of subpackets which add informa-
tion to the signature. Example of subpackets are: the creation date
of the signature, or the fingerprint of the issuer. When generating a
signature, a digest is computed over the data to sign as well as part
of the Signature packet body, including the specific subset of the
subpackets that are marked as “hashed subpackets”. In fact, not all
subpackets have to be hashed (and thus authenticated). The reason
for this is unclear and may be historical (e.g. at one time, it might
have been too expensive to sign the entire packet). The OpenPGP
specification indicates a few subpackets that must be hashed, most
notably the creation time, as well as the signature character set (if
present).

2.1 Long-Term Keys

Long-term keys are used to provide the confidentiality and authen-
ticity described in the previous sections. To communicate securely
with someone, their public key needs to be known. Similarly, to ver-
ify signatures, one needs to have the corresponding public key and
trust that it belongs to the stated entity. There are two supported
versions of key packets: version 4 and 5. These differ in terms of the
stored metadata. Unless otherwise stated, our observations apply
to both.

Public Key Packet. A Public Key packet includes the public key
parametersg necessary for encryption and signature verification.
A public key is identified by its fingerprint, which is computed as
the hash of the entire key packet (SHA-256 is used for v5 keys and
SHA-1 for v4 keys).

Secret Key Packet. A Secret Key packet is an extension of the
Public Key packet which also includes the private parameters and
a mechanism to protect them [19, Section 5.5.3]. The private pa-
rameters can be encrypted using a key derived from a passphrase
via a string-to-key (S2K) process (whose details are immaterial to

“With “key parameters” or “key material” we refer to the algorithm-specific values
that comprise a key (either public or private). From now on, we will use the terms
“public key” and “private key” to indicate the corresponding OpenPGP packet, which
includes the key parameters, as well as other information.

https://datatracker.ietf.org/wg/openpgp/

Version (4)
. Creation Date
fgflfrﬁ;ﬁ a) | [K&y Alorithm (ECDSA)
gerp Curve identifier O } Public
Public point Q parameters

K S2K usage (254, CFB)

ey > -

tion Symmetric Algorithm

entc:yp S2K specifier
settngs Initialization Vector Secret
Encrypted { Secret scalar d } ¢
data SHA-1 digest parameter

Figure 1: Secret Key packet body of an ECDSA key (version
4) protected using CFB mode. The SHA-1 digest is computed
over the secret parameters. Notice that the public parame-
ters are not cryptographically bound to the secret one.

our attacks). The encryption uses either CFB mode or AEAD. If
the former is used, the private parameters are encrypted together
with a 20-byte SHA-1 hash of their values, intended to protect their
integrity. Regardless of the protection mechanism used to encrypt
the secret key, only the private parameters are cryptographically
protected. In fact, the public parameters are always stored in cleart-
ext and are not cryptographically bound to the (encrypted) private
ones. This is illustrated in Fig. 1, which shows the structure of a
version 4 ECDSA Secret Key packet body.

Key and Subkey Packets. An OpenPGP key consists of a Secret
or Public Key packet (“primary key”) and any number of Subkey
packets. Secret and Public Subkey packets have the same body for-
mat as Secret and Public Key packets respectively, and only differ
in their packet tag. Subkeys are typically used for encryption oper-
ations, whereas primary keys are used for signing and certification
functions (of subkeys and User IDs). Subkeys are stored alongside
their primary key, but each packet is protected separately.

Certification Signatures. Public keys and subkeys must be signed
by the corresponding private primary key to be used in practice,
otherwise they are not considered trusted by implementations. A
primary key certifies that a subkey is associated with it by issuing
a Subkey Binding Signature computed over the subkey’s public
key. In turn, signing subkeys must sign back their primary public
key via Primary Key Binding Signatures. Finally, many implemen-
tations require that keys be associated with at least one User ID
through a self-certification signature (of type 0x10-0x13), issued by
the primary key. For more details, see [19, Section 5.2.1].

2.2 OpenPGP Implementations

Several implementations of the specification have been developed.
When discussing the practical impact of attacks in this paper, we
will focus on the following open-source libraries. This is a repre-
sentative sample of implementations from different languages and
used in popular applications, including those for which we discuss
fully developed attacks in Section 4.
GnuPG (GPG): the OpenPGP distribution of the GNU foun-
dation. It is the oldest and most popular open source im-
plementation, written in C.

RNP (prior to v0.16'%): a C++ library used by Thunderbird
for their native OpenPGP integration.

OpenPGP.js (prior to v4.10.5'%): a JavaScript OpenPGP li-
brary used by ProtonMail for their web app, as well as by
FlowCrypt and Mailvelope. It offers two different distribu-
tions: a browser version and a server-side Node.js one. The
two versions use different cryptographic libraries, hence
their behaviour in some cases can vary. In this paper, we
only look at the browser version.

gopenpgp (prior to v2.1'%): agolang OpenPGP library used
by ProtonMail for their desktop and mobile apps.

Sequoia PGP: a newer OpenPGP implementation, written
in Rust. Sequoia supports different crypto backends, but
for this paper we only consider Nettle as the underlying
crypto library, as it is the default one.

3 PRIVATE KEY EXTRACTION VIA KEY
OVERWRITING

As introduced in Section 2.1, the public key material stored as part
of the secret key packet is always in cleartext (see Fig. 1). Moreover,
said material is not cryptographically bound to the private parame-
ters stored in the ciphertext part of the secret key packet. We show
how to exploit these properties to perform KO attacks that recover
the private parameters when the corrupted key is used for either
signing or decrypting. In both cases, we exploit the interactions
between the victim'’s private parameters and the overwritten public
ones to learn information about the former. When signing, using
corrupted parameters results in so-called “faulty signatures”, which
can allow private key reconstruction; when decrypting arbitrary ci-
phertexts using malicious parameters, the outcome (success/failure)
of the operation can leak information about the private parameters
involved.

We start by introducing our threat model, and tackle some tech-
nicalities that an adversary needs to deal with in practice. Then
we describe KO attacks against the OpenPGP specification for an
adversary that has write access to encrypted key packets and that is
able to corrupt their contents. For each attack, we study how differ-
ent libraries are affected. Most of them perform some form of key
validation, which is not covered by the OpenPGP specification but
could prevent our attacks. However, we show that the implemented
steps are often ineffective and, in some cases, have observable side
effects that make it possible to exploit the validation process itself
to carry out KOKV attacks. We describe those KOKV attacks in
Appendix C.

3.1 Threat Model

We consider an adversary who has write access to the encrypted
private key of the victim. Further, we assume that the victim (resp.
their application) will use the private key as long as it decrypts suc-
cessfully with the expected passphrase. In other words, we assume
that the victim does not inspect their own key fingerprint before
using the key.'!

0For RNP, OpenPGP.js and gopenpgp, the results in this paper only apply to the
specified older versions; following our disclosures, the libraries have been patched
against the vulnerabilities presented in this paper.

" Checking the key fingerprint would always reveal whether the key was corrupted,
but users might not expect to have to check its value for their own keys (or might not

This threat model is especially relevant when it comes to services
that manage the user’s encrypted private keys and store them in
insecure storage, in the sense that the key files might be accessible
to untrusted parties. This is the case for applications like ProtonMail
and FlowCrypt, which we review in Section 4. However, in principle
keys can also be targeted when they are, for example, stored on a
USB drive, stored in the cloud, or are in transit.

In addition to corrupting the encrypted keys, depending on the
attack in question, the attacker also needs to get hold of signatures
generated by the victim, or learn the success/failure of some mes-
sage decryption. Section 4 covers application-level considerations
and explains how the adversary can access this type of information
to carry out end-to-end attacks.

3.2 Practical Considerations

Key Validation. Many OpenPGP libraries add key validation
checks that aim to verify the mathematical relationship between
public and private parameters before using them in any crypto-
graphic operations. Such validation is not covered by the OpenPGP
specification. Since our attacks modify public parameters, proper
key validation could prevent them from being carried out in practice.
For this reason, after presenting each attack, we review which imple-
mentations are actually vulnerable. We now give a brief overview
of what key validation is done by each library. For full details, see
Appendix D. Sequoia does not implement any checks, while all the
other libraries we study do: GPG and RNP check some mathemat-
ical relationships between the parameters, whereas OpenPGP.js
and gopenpgp try to sign and verify a message using the primary
key. However, key validation is not necessarily carried out by these
libraries. In fact, GPG and RNP validate the keys when they are
imported into the corresponding key stores. In GPG the user must
import the keys before usage, hence key validation is always run.
However, RNP does not enforce the use of the key store, hence
some attacks are viable depending on how an application loads the
user keys. Finally, OpenPGP.js and gopenpgp do not automatically
check private keys, but simply provide a key validation function
that can be called by applications, if desired.

Bypassing Key Certification Signatures. In Section 2.1, we ex-
plained how OpenPGP keys need to include a number of certifica-
tion signatures verifiable with the primary public key in order to be
considered valid by most implementations. Hence, for KO attacks
to work in practice, in addition to corrupting the public parame-
ters, the adversary needs to provide forged certification signatures
that can be verified using them. We explain how to do so for the
non-obvious cases in Appendix B.1.

3.3 KO Attacks Exploiting Faulty Signatures

Our first KO attack consists of tricking the victim into signing
a message using their corrupted key. From the resulting faulty
signatures, the adversary is able to learn at least partial information
about the private parameters. We detail how keys of any algorithm

check it thoroughly enough). Further, to lower the chance of detection if the victim
only looks at a few hex fingerprint digits, it should be feasible to forge a public key
whose fingerprint matches the original one in the first and/or last 3-4 bytes: one could
keep the public parameters fixed and change the creation date (in seconds) to get
different fingerprints. For more details on the fingerprint, see Section 2.1.

can be targeted, by replacing legitimate public key parameters with
malicious ones — notation wise, we always denote the latter with
an apostrophe, e.g. p’ is the replacement value of some parameter
p. We start by introducing two attacks against DSA keys.

3.3.1 Faulty Signature Attacks against DSA. The DSA signing
algorithm is shown in Algorithm 1 and uses the private exponent x
together with the public parameters g, g, p where p is a prime, q is
a large prime factor of p — 1 and g is an element of Z; with order gq.
The attack from [17] can be used to extract the private parameter
(key) through a single faulty signature. However, that attack no
longer works in practice since it requires replacing the group prime
p with a corrupted value p” such that p’ < ¢, where q is typically
160 or 256 bits long, while DSA keys with p of 1024 bits or less are
no longer supported by several implementations, since they are
deemed insecure [27]. Thus, we describe two alternative attacks
that can still be carried out against most libraries.

Variant 1: Klima-Rosa attack revisited. The private key can be
computed from one faulty signature as follows: let p” be a prime of
the desired key size such that p” — 1 is smooth, then set g’ to be the
next prime above p’ and g’ to be a generator of Z7,. The adversary
overwrites g, p, q in the victim’s key packet with ¢/, p’, ¢/, and then
needs to obtain one signature generated using the corrupted key.
From such a DSA faulty signature (r, s) over message m, the secret
x can be reconstructed as follows: since ¢’ > p’, we have that
r’ = (¢’ mod p’) mod ¢’ = ¢’¥ mod p’, and we can recover k
by computing the discrete log of r’ to base ¢’ mod p’. Finding
the discrete logarithm is feasible as p’ is smooth by construction,
and allows us to recover k mod p’ — 1. Given k, we can compute
x = (s-k—Hash(m))-r~! mod ¢q’. We now give more details about
the correctness of the attack. Thanks to our choice of ¢’ we are
almost guaranteed to recover k in full: while k is originally sampled
in Zg, which means that k might be larger than p’ — 1, in our case
k mod p’ — 1 = k mod ¢’ unless k € [p’, q’ — 1]. The probability of
sampling such k is on the order of (log p”)?/p’.!? So this probability
is small enough that it can be ignored in our attack.

Variant 2: small subgroup attack. The attack described above
allows extraction of the private key through one single faulty sig-
nature. Still, due to the large size of ¢’, the corrupted key may not
be supported by some implementations, as we will see later. Hence,
we describe a second attack on DSA keys using a small subgroup
attack. This technique requires tens of signatures to reconstruct
the full secret, but it gives the adversary more flexibility. The adver-
sary overwrites the primes p, ¢ and the subgroup generator g with
some prime p’ and small prime g’ such that g’ has order ¢’ in Z;,.
From the resulting faulty signature (r, s), the adversary can recover
x mod ¢’ by finding the value x* such that using y’ = ¢’* mod p’
in the verification of (r, s) is successful. The search for x* can be
done offline. The original x mod q can be reconstructed fully by
collecting enough signatures computed using different p/, ¢/ and
combining the different shares x* mod g; using the Chinese Re-
mainder Theorem (CRT). Finding the value of x mod g fails in two

cases: (1) if g’ mod p’ is a multiple of ¢’, since then r = 0 mod ¢,

124 is set to be the next prime above p’ and the gaps between primes are, according
to Cramer’s conjecture O((log p’)?).

Algorithm 1: DSA signing and verification

Algorithm 2: EdDSA signing algorithm

Data: Message m, public key (g, p, q, y), private key x,
signature (7, s)
1 Function DSA_Sign(m, (g, p, q), x)
2 k i [1,9-1]
3 r = (g* mod p) mod q
4 s = k! (Hash(m) +xr) mod gq
5 return (7, s)

6 Function DSA_Verify(m, (¢,p.q, y), (r,s))

7 w=s5""mod q

8 h = Hash(m) mod q

9 0= (¢""y"™" mod p) mod q
10 return v;r

and thus any y’ checks against the signature; or (2) if ¢’ is a factor
of s, meaning that the inverse w = s™! mod g/ does not exist, and
the signature is not verifiable. Using q; which are not too small
lowers the probability of failure. Larger primes are also preferable
as they lower the number of key overwrites and faulty signatures
needed in order to fully reconstruct x. For example, a 256-bit x can
be computed from about 16 key overwrite and faulty signatures
provided the adversary picks each g; to have 16 bits. At this size of
q;, finding the individual values x* is still efficient. This is a typical
size for x for 2048-bit DSA public parameter p.

Vulnerable Implementations. Note that in practice, the second
attack variant might not work exactly as detailed above, since most
libraries expect q to be at least 160 bits long. To get around this
limitation, it suffices to multiply ¢’ by some co-factor h of an appro-
priate size, and overwrite g with ¢’/ = ¢’k but still use g of order ¢’
in the attack. When it comes to the security of individual libraries,
Sequoia is vulnerable to both attacks, since it does not carry out any
key validation. OpenPGP.js and gopenpgp are also vulnerable, since
their key validation can be bypassed by setting a DSA primary key
with g = y = 1 and adding the target key as subkey.'? RNP and GPG
are safe against the first attack: GPG is not vulnerable thanks to its
key validation, whereas RNP does not support using q larger than
256 bits. As for the second attack variant, the key validation in RNP
is sufficient to prevent the attack, whereas the key validation in
GPG is incomplete and can only slow down the adversary, requiring
thousands of key overwrites instead of a few tens of key overwrites.
In fact, while both libraries verify the correspondence between the
public and private parameters, GPG does not confirm whether the
group order is prime and large enough. Hence, the adversary can
successfully import a corrupted key in GPG by guessing y” such
that y’ = ¢g’* mod p’. Additionally, the partial key validation done
in GPG (as well as in OpenPGP.js and gopenpgp) opens up the
possibility of exploiting the key validation process itself to recover
the private key. This attack vector is discussed in Appendix C.

131f the target key is a primary key, its Secret Key packet can be converted into a Secret
Subkey packet just by changing its packet tag. This trick can also be used to obtain
a DSA primary key from a DSA subkey, in case a DSA primary key is needed. Note
that this works for standard CFB-encrypted keys, but not for the proposed AEAD-
encrypted keys when the target is a primary key, because AEAD-encrypted keys do
authenticate whether the encrypted data is from a primary key or a subkey.

Data: Message m, curve base point G of order g,
secret seed k, signature (R, S)
1 Function EdDSA_Sign(m, (G, q), k)

2 (d, p) = Hash(k) // scalar d and prefix p

3 Q=dG // derive public point Q
4 r = Hash(p||m)
5 R=rG

6 h = Hash(R||Q||m)
7 S=r+d-hmodgq
8 return (R, S)

3.3.2 Cross-algorithm Attack against ECC keys. The above at-
tacks on DSA are quite impactful as they can be used to indirectly
compromise ElGamal and ECC keys (i.e. EADSA, ECDSA and ECDH
keys). These can be “converted into” DSA ones by keeping the en-
crypted key material and replacing the public key parameters and
key algorithm to reflect DSA keys. This trick is possible because
all the keys in question have a single private parameter, hence the
format of the encrypted portion of the key is the same. It follows
that ECC keys are vulnerable to the same set of attacks that target
DSA keys, including the ones described above.

3.3.3 Faulty Signature Attack against EADSA. 1t is known that
in EdDSA, the secret scalar d can be recovered from two signatures
generated over the same message but using different public keys.'*
For reference, the EADSA signing algorithm is given in Algorithm 2.
Assuming that the public point Q is taken directly from the supplied
public key and not re-derived from d, then signing the same message
m with both Q and Q’ gives two different signatures (S, R) and
(8’,R’) with S = r +dh mod g and S’ = r + dh’ mod g, from which
we can find d as: d = i:—fl: mod g, where h, h’ are known. Note
that in OpenPGP, the message m includes the data being signed,
as well as additional metadata, such as (a) signature creation time
and (b) (optional) issuer public key fingerprint. If the fingerprint
is signed then the attack cannot be executed, because m itself will
depend on the public key, so we cannot arrange to sign the same m
using different Q values. If only the creation time is signed, then
the attack can still succeed if the adversary can get two signatures
with the same timestamp. This may be feasible, since the creation
time is taken in seconds and the adversary might be able to execute
commands concurrently or control the time seen by the application.

Vulnerable Implementations. While GPG and Sequoia do not val-
idate EADSA keys, at the time of writing they are both protected,
since by default they do include the Issuer Fingerprint in signatures.
Signing the Issuer Fingerprint is not mandated by the specifications
and if the libraries were to omit (or not sign) the field/subpacket for
any reason, the attack would be possible. OpenPGP.js and gopenpgp
do not sign the Issuer Fingerprint, and are thus vulnerable if key
validation is not performed (this is up to the application). Finally,
RNP is always safe since it re-derives the point Q from d before
signing.

143ee discussion in the libsodium repository at https://github.com/jedisct1/libsodium/
issues/170. There was no actual vulnerability in the library since the public point was
re-derived from the secret scalar.

https://github.com/jedisct1/libsodium/issues/170
https://github.com/jedisct1/libsodium/issues/170

DSAv1(+ECC) DSAv2(+ECC) EdDSA RSA

15-bit q;
Key Overwrites 1 256-bit x: 18 1 1
512-bit x: 35
q 256-bit x: 18
Signatures 1 512-bit x: 35 2 1

Table 1: Cost of the different faulty signature attacks in
terms of key overwrites and number of signatures needed
to compute the secret.

DSAvl DSAv2

(+ECC) (+EcC) FEdDSA IR

GPG no depends no (fingerprint) no (CRT-RSA)
Sequoia no (fingerprint) no (CRT-RSA)
RNP no depends no (fingerprint) no (CRT-RSA)
OpenPGP js depends depends

gopenpgp depends no (CRT-RSA)

Table 2: Vulnerability status of the different implementa-
tions with respect to faulty signature key extraction attacks
(yes: vulnerable, depends: vulnerable unless the key is ex-
plicitly validated or based on other factors described in this
section). If a library is not vulnerable, but not primarily due
to key validation, then the reason is specified.

3.3.4 Faulty Signature Attack against Non-CRT RSA. Consider
RSA signatures in which no CRT tricks are used to speed up signing.
The adversary can replace n with a number n’ for which ¢(n’) is
smooth. From the resulting signature s’ = m? mod n’, the adver-
sary can recover d by computing log,, (s”) via the Pohlig-Hellman
algorithm. To recover d in full, the order of m in Z}, must be large
enough, namely ord,s(m) > d.If m is known in advance, the adver-
sary can pick n’ such that m has full order. Even if not, the condition
ordy (m) > d will hold with high probability if we pick n’ to be a
prime such that the odd factors of ¢(n’) = n’ — 1 are all mid-sized
primes ~ 220, With this choice of n’, solving the discrete logarithm
problem is still easy.

Vulnerable Implementations. All implementations but OpenPGP.js
use CRT-RSA for signing, hence the attack does not apply to them.
Applications that rely on OpenPGP.js and do not explicitly validate
keys are vulnerable. The key validation implemented by OpenPGP.js
is sufficient to prevent this specific attack provided the attacker
cannot predict at which time the key validation steps will be run.
More details about this limitation, as well as how the validation
process can be exploited to recover the private key in another way
can be found in Appendix C.2.

3.3.5 Summary. We have shown how any key is potentially
vulnerable to faulty signature attacks, either directly or indirectly
(i.e. through cross-algorithm attacks). In particular, encryption-
only keys such as ECDH and ElGamal keys can be compromised by
converting them into DSA keys. The same is true for ECDSA keys,
which are not directly impacted by fault attacks since the public
point is not used during signing. We highlight that most of the
attacks we have described require corrupting the victim’s key only
once, as shown in Table 1. For a summary of which implementations
are vulnerable to each attack, see Table 2.

3.4 KO Attacks Exploiting Decryption

Another way to learn information about the private key — after
corrupting the public parameters - is to observe whether decryp-
tion of chosen ciphertexts is successful. The idea is to exploit the
decryption success or failure as an oracle to incrementally allow an
adversary to recover the secret parameters. We stress that we do
not require access to the decrypted data; the adversary only needs
to know whether any errors occurred during the decryption opera-
tion. Depending on the application, accessing such errors may be
easier than getting hold of faulty signatures. Further, as we will see,
all the attacks in this section only require a single key overwrite.

We first formalize the oracle and then show how it can be used to
exploit ElGamal and RSA decryption to recover the private param-
eters by means of small subgroup attacks. To minimize the number
of key overwrites, we leverage the fact that OpenPGP supports
adding an unlimited number of subkeys to a given primary key.

As with the faulty signature attacks, we review the vulnerability
status of libraries immediately after describing each attack. Note
that for such analysis we only consider whether there is sufficient
key validation in place to prevent the issues, but we do not take
into account whether accessing the decryption oracle is possible
at an application level, since this depends on how the library is
integrated. As we explain below, a library will typically expose the
oracle through timing leakage. For application-level considerations,
see Section 4.

Session-Key Decryption Oracle. In OpenPGP, long-term keys are
not directly used to encrypt messages. In fact, messages are always
encrypted symmetrically using a session key, while the session
key is encrypted under a public-key and encoded in a Public-Key
Encrypted Session Key (PKESK) packet. For the attacks in this
section, we focus on the decryption of PKESK packets. Formally,
we consider a decryption oracle that accepts the ciphertext ¢ from
a Public-Key Encrypted Session Key Packet and returns 1 if the
decryption of ¢ was successful, or 0 otherwise.

It is enough to consider as input to the oracle only a PKESK
packet (namely without the subsequent symmetrically-encrypted
message) for two reasons: firstly, both ElGamal and RSA encryption
use PKCS#1 v1.5 padding (as per EME-PKCS1-v1_5 in [15]), and sec-
ondly, the PKESK plaintext includes an algorithm byte, the session
key, and a 16-bit checksum on that session key (see [7, Section 5.1]).
The redundancy provided by these two encoding steps done in suc-
cession means that the probability of getting a false negative from
the oracle, namely some c being marked as valid when it is not, is
on the order of 2748, Thus, we can be sure that the oracle’s results
are correct without relying on a later symmetric decryption step
failing due to a wrong session key being returned by the decryption
of the PKESK packet.

Having formalized the oracle, let us make a practical remark
about how it can be instantiated in practice, through timing leakage.
Note that successful decryption of the PKESK packet is necessarily
followed by symmetric decryption of the subsequent encrypted
message. On the other hand, if PKESK decryption fails, in typical
implementations, no symmetric decryption will take place. Hence,
even if PKESK decryption is performed in constant time, it is likely
that the oracle can be accessed through a timing side-channel ex-
posed by the presence or absence of a symmetric decryption step.

Additionally, since the adversary controls the ciphertext, the timing
leakage can be amplified by using large messages.

3.4.1 Decryption Oracle Attack against ElGamal. The ElGamal
encryption and decryption processes are shown in Algorithm 3. The
pseudo-code omits checking the 16-bit checksum on session keys
for ease of presentation. The EIGamal public parameters include
a prime p, a group generator g and y = g* mod p. The only secret
parameter is the exponent x, which is the target for our attack. We
write x = xo + x1 - 2+ x2 - 2% + - - - x,_12" "1 where ¢ is the known
bit-length of x. We will recover the bits x, x1, . . ., x;—1 in sequence.

The adversary begins by selecting a prime p’ of the form 2!/ +
1 and of the appropriate size. Such a prime is easy to construct
by trial and error over values of h of the right bit-size. Having
found p’, the adversary constructs g; of order 2/ mod p’.!> Now
the adversary overwrites the victim’s public parameters p, g, y with
p’,9’,y’. Here g’ and y’ can be arbitrary, since they are not used on
decryption. Hence, we simply select them so as to be able to forge
key certification signatures as explained in Appendix B.1.

To recover xy, the adversary sets g; = g?H, so g1 has order
2. It selects m to be an arbitrary, validly encoded session key. It
then sets ¢p = g1, ¢c1 = pad(m), and submits ¢ = (co, c1) to the
decryption oracle. Now the decryption process run by the oracle
sets m’ = ¢1-c;* mod p’, yielding m” = pad(m)-g7* mod p’. Since
g1 has order 2, we see that m” = pad(m) if and only if x = 0 mod 2,
i.e.if and only if xg = 0. Thus, decryption of (co, c1) succeeds if and
only if xp = 0.1°

To recover x1, the adversary now sets gz = g%H of order 4. It then
sets co = g2, ¢1 = pad(m) ~g§° with m as before, and submits (cg, ¢1)
to the decryption oracle. Note the extra term g;“’ in ¢q here. The
oracle sets m’ = c1-c;* = pad(m)-gg" -gz_xo_le = pad(m)-g;b‘1 =
pad(m) - g, ™' mod p’. (Here we use the fact that g, has order 4 to
ignore all but bits 0 and 1 of x). We see that m’ = pad(m) if and
only if x; = 0. Thus, decryption of (co, ¢1) succeeds if and only if
x1 =0.

The adversary proceeds in this way to recover x bit-by-bit. In

. . t—j-1
the general case, to recover bit x;, it sets gj4+1 = g? of order
j—1
i+1 _ _ Xo+2X1+ X j 127
277 sets ¢y = gj+1, c1 = pad(m) - i1 , and sends

¢ = (cp, c1) to the decryption oracle, with successful decryption
indicating x; = 0.

The overall cost of the attack is one key overwrite and ¢ oracle
queries, where t is the bit-length of the private parameter x. In
practice, in ElGamal, the bit-length of x is often much smaller than
that of p, for efficiency reasons (e.g. GPG samples a 338-bit x for a
2048-bit p).

Notice that the above attack can be prevented by checking that
p —1is not divisible by a large power of 2 before using it (i.e. during
a key validation step). However, there is a related small subgroup
attack in which the prime 2 is replaced by a sequence of small primes
q’ dividing p’ — 1 and the CRT is used to reconstruct the private
key. Such attack is more costly to mount in terms of decryption

15Set z at random mod p’ and g; = 2" -0/2" mod p’; such a g; has order dividing
2!; repeat the process until g, has the desired order.
16Here, recall, we can assume that the combination of PKCS#1 v1.5 decoding and
session key checksum ensure the oracle has no false negatives, so when m’ = pad(m) -
g1, the oracle always indicates a decryption failure.

Algorithm 3: ElGamal encryption and decryption with
pad(-) and depad(-) denoting PKCS#1 v1.5 encoding and
decoding.

Data: Message m, public key (g, p, y), private key x,
ciphertext (co, ¢1)
1 Function E1Gamal_Encrypt(m, (¢, p, y))
2 k i [Lp-1)
3 ¢o = g* mod p
4 ¢1 = pad(m) - y* mod p
5 return (cg, c1)

6 Function E1Gamal_Decrypt((co, c1), (g, p), x)

7 m' =c; - c¢;* mod p
s m = depad(m’)
9 return m

queries, but protecting against it is considerably more complicated.
In particular, key validation would need to check that p — 1 is not
divisible by all small primes up to a certain size. See Appendix D for
further discussion of the full ElGamal key validation and its cost.

Vulnerable Implementations. Sequoia is safe since it does not
support ElGamal encryption. All the other libraries are vulnerable,
since their key validation steps are insufficient. Note that to run the
attack, since ElGamal keys are encryption-only (namely they are
necessarily subkeys) the adversary always needs to overwrite the
primary key (to forge Certification Signatures). As a result, the ad-
versary needs to deal with both primary and subkey key validation,
but we now explain how neither prevent the attack. In OpenPGP.js
and gopenpgp, key validation is only run over the primary key,
which in the context of this attack can be converted into (or re-
placed by) a DSA one and then the corresponding (incomplete) key
validation will always succeed by setting ¢’ = ¢y’ = 1.7

In RNP and GPG, while both the primary key and the subkeys
are validated, the adversary can always avoid the former validation
by converting the key into a “GNU-dummy” one.'® Further, the
ElGamal key validation of both libraries does not perform enough
checks to protect against the attack: the validation performed by
RNP is always successful given our choice of public parameters,
whereas GPG’s ElGamal key validation can be bypassed by setting
g’ =y’ = 1. Note that this does not affect the attack, because neither
g nor y is used during ElGamal decryption.

The lack of sufficient key validation for ElGamal in all libraries
is not surprising, since the order of the generator cannot be easily
confirmed due to the fact that, following the OpenPGP specification,
the group has composite order. Appendix D gives more details on
what this entails in terms of key validation.

3.4.2 Cross-algorithm Attack against ECC keys. In the context of
faulty signature attacks, we have seen how the DSA attacks could

171f an RSA primary key with ElGamal subkey is targeted, meaning that the RSA key
cannot directly be converted to a DSA one (due to incompatible secret parameters),
the adversary can still convert the ElGamal (sub)key into a DSA one and overwrite
both the primary and subkey with it.

18This is a non-standard key format (see https://dev.gnupg.org/source/gnupg/browse/
master/doc/DETAILS$1497) which is supported by all the implementations in question.
The GNU-dummy keys we consider include secret subkeys, but only the primary public
key. The absence of secret parameters makes it impossible to run key validation.

https://dev.gnupg.org/source/gnupg/browse/master/doc/DETAILS$1497
https://dev.gnupg.org/source/gnupg/browse/master/doc/DETAILS$1497

be used to indirectly compromise ECC and ElGamal keys, since
the private parameters have the same formats (see Section 3.3.1).
The same trick applies here: the adversary can take any encrypted
ECDH, EdDSA, ECDSA or DSA encrypted key packet, construct an
ElGamal key packet from it, and then target it with the following
decryption oracle attack. In the ECC setting, the bit-length of x is
usually less than 521 (and 256 is common). So the ElGamal attack
applied to ECC keys is very efficient in practice.

3.4.3 Decryption Oracle Attack against non-CRT RSA. RSA is
vulnerable to a small subgroup attack, provided that the public
modulus n is used in decryption (and not its factors). In such a case,
the adversary can overwrite n as well as the public exponent e to
recover d. OpenPGP again relies on PKCS#1 v1.5 encoding for RSA
encryption, but unlike the ElGamal case, the padding needs to be
handled for the RSA attack to be feasible.

We now explain how to pick n’, ¢’ and the ciphertext ¢ so that
the adversary can ultimately compute the private parameter d:

(1) Let pad(m) denote a PKCS#1 v1.5 encoded message of some
bit-length k’ (that need not be the same as the length of
the original modulus n). Let p be small prime of the form
p = 2q + 1 where q is also prime.'? If pad(m)? = 1 mod p
and pad(m) # 1 mod p, set n’ = pad(m) - p and overwrite
the victim’s n with n’. The value of e in the key does not
matter as it is not used during RSA decryption.? If the
conditions are not met, sample a different random padding
in pad(m) and retry. This step will require on average 2
attempts (since the conditions we set only require pad(m)
to be a quadratic non-residue modulo p). Thanks to our
later exact choice of p, n’ will be of a size such that the
PKCS#1 v1.5 padding in pad(m) when taken modulo n’
will include the correct leading bytes.

(2) For each e’ € [1,q — 1], query the decryption oracle on

~

¢ = pad(m)¢ mod n’; decryption will succeed if and only
ifde’ = 1 mod g. When decryption succeeds, the adversary
can recover d mod q via d = (¢’)™! mod q. If no value of
e’ works, then it must be that d = 0 mod gq.

The adversary repeats the above process with different pairs p;, g;
(the targeted pad(m) may also change) and combines the resulting
d mod g; using the CRT to reconstruct d in full.

To see why the attack works, note that ged(p, pad(m)) = 1
(by construction) hence using the CRT we have that pad(m)del
pad(m) mod n’ is equivalent to the pair of conditions

pad(m)?€’ = pad(m) mod pad(m)

pad(m)?¢’ = pad(m) mod p

The first condition always holds as both sides are equal to 0 mod
pad(m), whereas the second condition holds if and only if ed’ =
1 mod g, since pad(m) lies in the subgroup of Z;, of order g.

To ensure n’ has the proper byte length such that the PKCS#1
v1.5 padding in pad(m) mod n’ is correct, the adversary can pick

%p, g in this context have nothing to do with the secret RSA factors of a legitimate n.
20We assume that the RSA key being targeted has encrypt-only capabilities, hence e
will not be used to verify a Primary Key Binding signature. If the original subkey can
also be used for signing, then the adversary can easily disable that capability when
forging the certification signatures.

ElGamal (+ ECC) RSA
Overwrites 1 1
Subkeys 1

256 for 256-bit x
521 for 521-bit x

234 for 2048-bit d
Worst case:

Decryptions ~ 78k for 2048-bit d

Table 3: Number of key overwrites and oracle queries for
each decryption attack, given common key sizes and small-
est possible g; (to minimize decryption queries).

a p having between 8 and 16 bits.?! In terms of attack complexity,
using a small p (and so a small q) lowers the total number of oracle
queries needed to recover d in full, since in the worst case g — 1
decryption queries are needed to recover d mod q. While different
values of n’ are required to carry out the attack, note that the
victim’s key needs to be overwritten only once, as it suffices to
add a different subkey for each n’. Hence, in some settings, picking
fewer but larger primes g; is preferable, depending on the maximum
number of subkeys that are supported by the target implementation.
Table 3 summarizes the cost of the attack for 2048-bit RSA.

Vulnerable Implementations. As already mentioned when dis-
cussing the RSA faulty signature attack, most implementations are
protected since they rely on the CRT-RSA algorithm. OpenPGP.js
is the only exception. If the primary key is an RSA one and key
validation is performed, then the attack is not viable, unless the
attacker can predict at which time the validation will be carried out
(see Appendix C.2 for details on how to bypass the RSA validation
process in OpenPGP.js). In all other cases, the library is vulnerable:
as mentioned when discussing the ElGamal attack, encryption sub-
keys are never validated by OpenPGP.js, and if a DSA primary key
is used, setting its public parameter to g’ = y’ = 1 always results in
a successful validation.

3.4.4 Summary. We have presented a second class of KO attacks
which takes advantage of decryption oracles to compromise any
key, including signing ones. ECC and DSA private keys can be
targeted by placing their encrypted key material inside an E1Gamal
key packet. The attack for ElGamal (and therefore for ECC and DSA)
is particularly efficient in terms of the number of oracle queries
required.

Exploiting decryption rather than signing can be convenient for
interactive applications, especially if the adversary cannot acquire
faulty signatures. The required oracle access might be obtained
through error messages or timing leakage.

A summary of the cost of each attack in terms of oracle queries
and key overwrites is given in Table 3, whereas Table 4 gives an
overview of which libraries are potentially vulnerable based on
their key validation methods (or lack thereof).

4 TARGETING OPENPGP APPLICATIONS

In this section, we examine the feasibility of the KO attacks pre-
sented previously in the context of some real-world applications.
We first cover to what extent email clients might be vulnerable.
Then, we consider two other deployment models that use poten-
tially insecure/adversary-accessible storage. Specifically, we will

HLarger p cannot be used since the PKCS#1 v1.5 encoding requires that pad (m) must
have leading bytes 0x00, 0x02; smaller p would destroy the PKCS#1 v1.5 formatting.

ElGamal (+ECC) RSA

GPG no (CRT-RSA)
Sequoia no (unsupported) no (CRT-RSA)
RNP no (CRT-RSA)
OpenPGP.js depends

gopenpgp no (CRT-RSA)

Table 4: Vulnerability status of the different implementa-
tions with respect to decryption oracle key extraction at-
tacks. If a library is not vulnerable, but not primarily due
to key validation, then the reason is specified.

see how these vulnerabilities affected FlowCrypt and ProtonMail.”?
We discuss specific attacks against these particular applications
to show how our attack ideas translate from isolated libraries to
specific applications. Our aim is to give examples of vulnerable
scenarios which could be found in other applications with similar
features and authentication logic.

Targeting encrypt-to-self. In addition to the attacks detailed in
Section 3, which exploit secret key operations (signing and de-
crypting), we briefly describe another attack vector which exploits
encryption, and can be carried out against email applications, by
taking advantage of the fact that emails are usually also encrypted
to the sender’s key, so that they can be stored in encrypted form
and still be readable by the sender. The attack consists of replacing
the public encryption key of the victim with one for which the
adversary knows the private counterpart: any sent message will
then be encrypted to the malicious key, and the adversary will
be able to decrypt it, after intercepting the message. Compared to
the key extraction attacks, one limitation of this encrypt-to-self
compromise is that it only allows accessing sent messages, and not
received ones (unless the sender quotes the received message when
replying). Further, in the next paragraph we explain how secret key
recovery has farther reaching consequences.

Impact of primary key recovery. In OpenPGP, compromising even
a sign-only primary key could lead to long-term breach of confiden-
tiality. In fact, if the adversary is able to obtain the primary private
key of the victim, not only will they be able to sign messages with
it (impersonating the victim), but they could also generate new key
certification signatures. This allows an adversary to add encryption
subkeys to the victim’s key and advertise them publicly: as the
third-party certifications will still be valid, the updated key will be
considered legitimate by the victim’s web-of-trust (see Section 2),
and other users would likely start encrypting messages to the mali-
cious encryption subkey. If the adversary were able to carry out a
MITM attack, then they could intercept and access the messages,
and re-encrypt them to the victim’s original encryption subkey, to
avoid detection.?®

4.1 Email Clients

Email clients with OpenPGP integration usually support importing
an existing key. Depending on where this key is stored by the user

22FlowCrypt and ProtonMail developers were informed about the attacks. At the time
of writing, the attacks described in this section are no longer possible.

ZSince OpenPGP is vulnerable to surreptitious forwarding [5] unless the signature
includes a signed Intended Recipient Fingerprint subpacket, the adversary could also
relay any original message signature from the sender.

10

(before import), an adversary might have been able to overwrite
it. Then, in the absence of key validation checks performed by the
OpenPGP-extension in the client, if the user is not careful enough
to inspect the key fingerprint, a corrupted key might be imported.

Decryption oracle attacks are quite challenging to mount in an
email client setting. Such an attack might be possible if, for ex-
ample, email decryption and subsequent rendering are automated
by the email client. In such a case, the adversary can craft a mes-
sage loading a specific image via URL (which they control), and
determine whether a specific ciphertext decrypted successfully by
monitoring accesses to the corresponding image URL. However,
our attacks would require many such emails to be processed; in
contrast the EFAIL attack [28] required only one. On the other hand,
faulty signature attacks are viable. To obtain a faulty signature, the
adversary might initiate an encrypted conversation with the victim:
as OpenPGP messages are commonly signed, it is likely that the
victim will include a signature in their reply message.

When it comes to attack detection, note that the adversary can
corrupt the victim’s key in such a way that the victim will still be
able to decrypt older (and newer) emails that were encrypted to
their legitimate key. In fact, the original victim’s decryption subkey
need not be removed when corrupting the key: the adversary only
needs to replace its certification signature, so that it can be verified
by the malicious primary key, thus imported and used by the client.
Of course, the victim’s past signatures will not verify anymore
using the corrupted key, thus the sent emails will not be marked
as authentic, however the emails in the inbox are signed by the
sender. Hence, the victim might not immediately notice any issues
with their imported key. Still, after obtaining the private key, in the
general case the adversary cannot restore the original victim’s key
by replacing the imported malicious one, so the attack is likely to
be detected eventually.

4.2 FlowCrypt

FlowCrypt provides a browser extension that allows users to take
advantage of OpenPGP features when using Gmail. The application
relies on the external email service (Gmail) to send, receive and
store encrypted emails, which are actually processed by the trusted
browser extension. Thus, the corresponding threat model is that of
an untrusted server storing encrypted data. The browser extension
directly communicates with the front-end code of the webmail
service; the lack of interaction with a remote entity makes CCA
attacks generally difficult, even though there is a still potential for
in-browser attacks through e.g. cache attacks [10]. For instance,
such an attack could be initiated by the Gmail web app.

Aside from the browser extension, FlowCrypt also offers mobile
apps that connect to different email providers. To easily transfer the
user’s key across devices, as well as for backup purposes, FlowCrypt
allows the user to store the encrypted private key in the user’s inbox,
by creating an email with subject “Your FlowCrypt Backup” and
an attachment named “flowcrypt-backup-<gmailaddress>.key”
that contains the encrypted key. When restoring a backed-up key
from the inbox, the browser extension prompts the user to input the
passphrase, but it does not show the corresponding key fingerprint.
As long as the key decrypts successfully, it is imported. We now
describe how the email provider, or an adversary with access to the

inbox, can use the backup email feature as an entry point for KO
attacks.

4.2.1 Attacking FlowCrypt Users. A backed-up key can be im-
ported directly into the FlowCrypt browser extension or mobile
app. There are no key checks in place, neither when importing a
key from a file nor when importing it from the inbox. As a result,
an adversary who has access to the inbox can tamper with the
backed-up key with the objective of carrying out a faulty signature
attack to extract the private key, or an encrypt-to-self attack to
read any sent messages, after the user has restored the malicious
key from the backup. As a user is unlikely to restore a backup of-
ten, the two most viable attacks are the DSA and RSA ones that
require to corrupt the key only once, and that can recover the secret
from a single faulty signature (see the DSA Attack (variant 1) and
Non-CRT-RSA attack in Section 3.3). Table 5 gives a summary of
the feasibility of the various attacks we discussed. We verified the
possibility of completing an RSA faulty-signature attack through
backup email corruption by acting as the victim and simulating
an attack against ourselves: we generated a fake back up email**
containing a compromised RSA encrypted key (as per Section 3.3.4)
and were able to import it successfully. We then sent out a signed
email, whose embedded (faulty) signature allowed us to compute
our original secret key (specifically, the secret exponent).

Attack Detection. The same comments for email client attacks
also apply to FlowCrypt: the victim’s key can be corrupted in a
way that does not disrupt inbox decryption, however, new and old
signatures in sent messages will not verify. Further, the adversary
will probably be unable to hide their tracks by restoring the original
key, unless the victim happens to re-import the backup key soon
after the key extraction attack takes place.

4.3 ProtonMail

ProtonMail is built with an end-to-end encrypted architecture in
mind, where the users do not have to trust the ProtonMail servers:
sensitive data is encrypted by the clients and stored on the servers
(this includes encrypted emails and keys). The users interact with
either the ProtonMail web app, or the mobile applications (available
for i0S and Android devices).

The code of the ProtonMail clients is open source, hence it can
be inspected to check that sensitive information is not leaked to
the server. However, for the web app, the code of the JavaScript
front-end is downloaded from the server, which could send ma-
licious code to target users. To prevent this issue and allow the
web client to detect whether unexpected code was downloaded, a
feature called “source code transparency” is planned [12]. Despite
this protection not yet being in place, we assume that the JavaScript
code used by the ProtonMail clients (including OpenPGP.js) has
not been tampered with and matches the open-sourced code (other-
wise attacks targeting users’ private keys are trivial). An extensive
overview of ProtonMail’s architecture is given in the ProtonMail
white paper [29]; the architecture was also independently reviewed
in [18].

24To create a fake backup email that is correctly detected by FlowCrypt for import
purposes, it sufficed to send an email with the same format as a legitimate backup
email to our own Gmail address.

11

We now give a brief summary of the web app’s logic. To login,
the SRP-6a protocol [1] is used to confirm that the user knows
the password, without sharing it with the server. If the login is
successful, the user’s encrypted keys are downloaded from the
server, and the client tries to decrypt them with a passphrase which
is derived from the user’s password using berypt [30] with a unique
salt. If the keys are already decrypted, or if they cannot be decrypted
with the derived passphrase, a banner is displayed warning the user
that the key could not be decrypted. If decryption is successful, then
the keys are used to locally decrypt the user’s mailbox, and generally
trusted for any operation (including signing and encrypting-to-self
new messages).

When sending a message, the client fetches the recipient’s key
from the server. In principle, a malicious server could perform a
MITM attack and read the sent message by giving the wrong public
key. To protect against this, users are able to mark a contact’s key
as trusted after having attested to its authenticity through other
channels. Trusted keys are signed using the user’s private key, and
when composing a message to a trusted recipient, the user can
visually check the validity of the fetched public key.?> As the user
composes a message, draft versions of it are periodically saved,
signed and encrypted using the user’s decrypted key and uploaded
to the server: encryption to the recipients’ keys is only performed
after the user has clicked the “Send” button.

Cryptographic operations over confidential data are run client-
side, however, some corresponding high-level errors may be re-
ported to the server for diagnostic purposes. We will review how
this might be problematic in specific cases.

Finally, aside from server-based attacks, when JavaScript code is
run in the browser there is a risk that sensitive operations can be
targeted using cross-tab cache attacks, as for FlowCrypt.

4.3.1 Attacking ProtonMail Users. ProtonMail applications rely
on OpenPGP.js and gopenpgp, and they do invoke the correspond-
ing key validation functions following successful key decryption.
Still, due to the incompleteness of the key validation procedures, KO
attacks are feasible. To target ECC or DSA keys, the main obstacle
for the attacker (a malicious server) is getting hold of a DSA faulty
signature. This can be achieved by waiting for the user to create
or edit a contact (which is automatically signed and uploaded to
the server). Another option is to run the faulty signature attack
in combination with an encrypt-to-self attack, and wait for the
user to compose a message, then extract the signature from the
resulting draft. Targeting users with RSA keys?® is more involved
due to the key validation in place, and only possible in the web app.
If the attacker is willing to expend the moderate effort required
to factor 512-bit integers [33], they can bypass key validation for
approximately 80% of logins. At a cost of only 30s of offline compu-
tation per login, the attacker can target 32% of logins. For details,
see Appendix B.2. After bypassing key validation, an RSA faulty
signature attack unfolds in the same way as for DSA.

As hinted, encrypt-to-self attacks are also possible, but they are
as hard to mount as faulty signature attacks: key validation needs
to be bypassed in the same way, and when the user is composing a

BSee https://protonmail.com/support/knowledge-base/address-verification/.
26RSA was the default key type prior to July 2021, see https://github.com/ProtonMail/
WebClients/commit/8ff22e1b190a88b4e726b20f4eb69c9c0e89a262.

https://protonmail.com/support/knowledge-base/address-verification/
https://github.com/ProtonMail/WebClients/commit/8ff22e1b190a88b4e726b20f4eb69c9c0e89a262
https://github.com/ProtonMail/WebClients/commit/8ff22e1b190a88b4e726b20f4eb69c9c0e89a262

Faulty signature Decryption oracle Encrypt-to-self

DSA DSA DSA
RSA (,ECO) RSA ((Eco) RSA (,ECO)
FlowCrypt no no
ProtonMail no no

Table 5: Feasibility of the different types of key overwriting
attacks in the context of specific applications, based on the
primary key type.

message, then the automatically generated draft is always signed-
then-encrypted. Hence, the best option for an attacker is to take
advantage of these attacks not to directly break confidentiality, but
as a means to obtain a faulty signature.

For decryption oracle attacks, while the possibility of user com-
promise is indeed present, concretely exploiting the vulnerabilities
is likely infeasible, due to the lack of automated message decryption.
In fact, emails are only decrypted when the user opens them, hence
even though a malicious server could access the oracle by moni-
toring error messages sent to the server (for diagnostic purposes)
when message decryption fails, recovering a significant number of
bits of the private keys of ProtonMail users via this attack seems
impractical. For an overview of the feasibility of all the different
attacks against ProtonMail, see Table 5.

Attack Detection. In ProtonMail, the server has full control of
which keys are sent to the user, meaning that the legitimate keys
can be restored at the next login after carrying out a key extraction
attack (or a partial encrypt-to-self attack). Potentially, compromis-
ing one user session is enough to complete a faulty signature attack.
The only trace left behind would be some unverifiable sent messages
or data, which the user could simply attribute to a bug.

5 COUNTERMEASURES

Short-Term Solution. To prevent the KO attacks presented here,
implementations should not perform private key operations un-
less the integrity of the corresponding public parameters has been
checked. This can be done by verifying that the correct relation-
ship holds between the private key and the public key parameters
(since the private key is integrity protected through the hash-then-
encrypt mechanism used to lock the private key packet). Achieving
this requires performing a series of key validation steps that de-
pend on the specific algorithm; these are not specified as part of
OpenPGP. Some implementations do already perform some form
of key validation, but none of the libraries we have reviewed in-
cluded sufficiently thorough checks to prevent all the attacks we
have described. In Appendix D we detail the validation steps that
need to be carried out to protect the keys of each algorithm type.
However, these validation procedures, unlike the long-term solu-
tion discussed next, are not provably secure against e.g. potential
variant KO attacks, hence they should only be used to safeguard
legacy keys.

Long-Term Solution. Proper key validation is relatively expensive,
algorithm-specific, and current implementations do not do it well.
We believe that a better long-term solution is to use AEAD to guar-
antee full key integrity on decryption in an algorithm-agnostic way.
AEAD-encrypted keys have already been added in the draft RFC

12

4880bis [19], and our proposal is a small extension of the existing
specification that would not require any additional cryptographic
functionality. All that is required is to include the public key mate-
rial and the algorithm type in the Associated Data when creating
AEAD-encrypted private keys. The standard security guarantees
of AEAD ensure that the public key and algorithm type are then
integrity-protected and bound to the encrypted private key. We
worked with the OpenPGP working group on this AEAD proposal.
It was added to the crypto-refresh document [20] in December 2021.

Finally, note that in implementations where the “encrypt-to-self”
attack described in Section 4 is applicable, key decryption (and key
validation for non-AEAD-encrypted keys) should be carried out
before using the key for encryption, if the public parameters are
not trusted.

6 CONCLUSIONS

In this paper, we have investigated key overwriting (KO) attacks
against the OpenPGP specification, its implementations, and appli-
cations making use of those implementations. The attacks recover
the private keys of users. Of particular note is how the changing
landscape of real-world OpenPGP usage extends an attack avenue
that dates as far back as 2001 [17].

We have seen how the lack of cryptographic binding between
public parameters and (encrypted) private parameters in Secret Key
packets allows cross-algorithm attacks in our setting, reducing the
security of all discrete logarithm schemes to that of the weakest
instance with interchangeable private key format. We also showed
how the ability to overwrite public key parameters can be efficiently
exploited for DSA and non-CRT RSA signatures, as well as ElGamal
and non-CRT RSA decryption (assuming a single-bit side chan-
nel indicating decryption success or failure). Here we developed
a range of novel attacks based on the particularities of the differ-
ent algorithms, their implementations, and the non-standardised
key validation procedures used in the main cryptographic libraries
supporting OpenPGP. We found that some of the key validation
procedures executed by specific libraries can themselves be ex-
ploited to carry out KOKV attacks. This highlights the danger of
the OpenPGP specification leaving the task of confirming key in-
tegrity to individual implementations.

Finally, we proposed a simple, easy-to-deploy countermeasure
to this class of attack: use an AEAD scheme to encrypt the pri-
vate parameters of Secret Key packets, incorporating the public
parameters (as well as the key algorithm) into the Associated Data.
This countermeasure has now been included in the draft OpenPGP
crypto-refresh document [20].

We also recommend deprecating the ElGamal encryption option
in OpenPGP. As our work and [6] show, it is a dangerously weak
encryption option, and proper key validation for it is expensive.

REFERENCES

[1] 2016 (accessed April 19, 2022). Improved Authentication for Email Encryption and
Security. https://protonmail.com/blog/encrypted_email authentication. (2016
(accessed April 19, 2022)).

[2] 2020 (accessed August 25, 2020). Stop Using Encrypted Email. https://
latacora.singles/2020/02/19/stop-using-encrypted.html. (2020 (accessed August
25, 2020)).

[3] Martin R Albrecht, Jake Massimo, Kenneth G Paterson, and Juraj Somorovsky.
2018. Prime and prejudice: primality testing under adversarial conditions. In

https://protonmail.com/blog/encrypted_email_authentication
https://latacora.singles/2020/02/19/stop-using-encrypted.html
https://latacora.singles/2020/02/19/stop-using-encrypted.html

(4]

(5]

[10]

[11]

[12]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. 281-298.

Daniel Bleichenbacher. 1998. Chosen Ciphertext Attacks Against Protocols Based
on the RSA Encryption Standard PKCS #1. In Proceedings of the 18th Annual
International Cryptology Conference on Advances in Cryptology (CRYPTO ’98).
Springer-Verlag, Berlin, Heidelberg, 1-12.

Don Davis. 2001. Defective Sign & Encrypt in S/MIME, PKCS# 7, MOSS, PEM,
PGP, and XML. In USENIX Annual Technical Conference, General Track. 65-78.
Luca De Feo, Bertram Poettering, and Alessandro Sorniotti. 2021. On the
(In)Security of ElGamal in OpenPGP. In CCS ’21: 2021 ACM SIGSAC Confer-
ence on Computer and Communications Security, Virtual Event, Republic of Korea,
November 15 - 19, 2021, Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi
(Eds.). ACM, 2066-2080. https://doi.org/10.1145/3460120.3485257

Hal Finney, Lutz Donnerhacke, Jon Callas, Rodney L. Thayer, and David Shaw.
2007. OpenPGP Message Format. RFC 4880. (Nov. 2007). https://doi.org/10.
17487/RFC4880

Hal Finney, Rodney L. Thayer, Lutz Donnerhacke, and Jon Callas. 1998. OpenPGP
Message Format. RFC 2440. (Nov. 1998). https://doi.org/10.17487/RFC2440
Steven D. Galbraith, Jake Massimo, and Kenneth G. Paterson. 2019. Safety in
Numbers: On the Need for Robust Diffie-Hellman Parameter Validation. In Public-
Key Cryptography - PKC 2019 - 22nd IACR International Conference on Practice and
Theory of Public-Key Cryptography, Beijing, China, April 14-17, 2019, Proceedings,
Part II (Lecture Notes in Computer Science), Dongdai Lin and Kazue Sako (Eds.),
Vol. 11443. Springer, 379-407. https://doi.org/10.1007/978-3-030-17259-6_13
Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom. 2018. Drive-by
key-extraction cache attacks from portable code. In International Conference on
Applied Cryptography and Network Security. Springer, 83-102.

Matthew Green. 2014 (accessed August 25, 2020). What’s the matter with
PGP? https://blog.cryptographyengineering.com/2014/08/13/whats-matter-
with-pgp/. (2014 (accessed August 25, 2020)).

Daniel Huigens. 2020 (accessed August 31, 2020). Building a Web App that
Doesn’t Trust the Server. https://archive.fosdem.org/2020/schedule/event/dip_
securing_protonmail/. (2020 (accessed August 31, 2020)).

Kahil Jallad, Jonathan Katz, and Bruce Schneier. 2002. Implementation of chosen-
ciphertext attacks against PGP and GnuPG. In International Conference on Infor-
mation Security. Springer, 90-101.

Andrey Jivsov. 2012. Elliptic Curve Cryptography (ECC) in OpenPGP. RFC 6637.
(June 2012). https://doi.org/10.17487/RFC6637

Burt Kaliski. 1998. PKCS #1: RSA Encryption Version 1.5. RFC 2313. (March
1998). https://doi.org/10.17487/RFC2313

Jonathan Katz and Bruce Schneier. 2000. A Chosen Ciphertext Attack against
Several E-Mail Encryption Protocols. In Proceedings of the 9th Conference on
USENIX Security Symposium - Volume 9 (SSYM’00). USENIX Association, USA,
18.

Vlastimil Klima and Tomas Rosa. 2002. Attack on Private Signature Keys of the
OpenPGP Format, PGP (TM) Programs and Other Applications Compatible with
OpenPGP. IACR Cryptol. ePrint Arch. 2002 (2002), 76.

Nadim Kobeissi. 2018. An Analysis of the ProtonMail Cryptographic Architecture.
IACR Cryptol. ePrint Arch. 2018 (2018), 1121.

Werner Koch, brian m. carlson, Ronald Henry Tse, Derek Atkins, and Daniel Kahn
Gillmor. 2020. OpenPGP Message Format. Internet-Draft draft-ietf-openpgp-
rfc4880bis-10. Internet Engineering Task Force. https://datatracker.ietf.org/doc/
html/draft-ietf-openpgp-rfc4880bis-10 Work in Progress.

Werner Koch and Paul Wouters. 2021. OpenPGP Message Format. Internet-Draft
draft-ietf-openpgp-crypto-refresh-04. Internet Engineering Task Force. https:
//datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh-04 Work in
Progress.

Moxie Marlinspike. 2015 (accessed August 25, 2020). GPG And Me. https:
//moxie.org/2015/02/24/gpg-and-me.html. (2015 (accessed August 25, 2020)).
Jake Massimo and Kenneth G. Paterson. 2020. A Performant, Misuse-Resistant
API for Primality Testing. In CCS "20: 2020 ACM SIGSAC Conference on Computer
and Communications Security, Virtual Event, USA, November 9-13, 2020, Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM, 195-210. https:
//doi.org/10.1145/3372297.3417264

Florian Maury, Jean-Rene Reinhard, Olivier Levillain, and Henri Gilbert. 2015.
Format Oracles on OpenPGP. In Topics in Cryptology - CT-RSA 2015, The Cryptog-
rapher’s Track at the RSA Conference 2015. San Francisco, United States, 220-236.
https://doi.org/10.1007/978-3-319-16715-2_12

Fabrizio Milo, Massimo Bernaschi, and Mauro Bisson. 2011. A fast, GPU based,
dictionary attack to OpenPGP secret keyrings. Journal of Systems and Software
84, 12 (2011), 2088-2096.

Serge Mister and Robert Zuccherato. 2005. An Attack on CFB Mode Encryption
as Used by OpenPGP. In Proceedings of the 12th International Conference on
Selected Areas in Cryptography (SAC’05). Springer-Verlag, Berlin, Heidelberg,
82-94. https://doi.org/10.1007/11693383_6

Phong Nguyen. 2004. Can We Trust Cryptographic Software? Cryptographic
Flaws in GNU Privacy Guard v1.2.3, Vol. 3027. 555-570. https://doi.org/10.1007/

13

978-3-540-24676-3_33

NIST. 2013. Digital Signature Standard (DSS). FIPS 186-4. (2013). https://doi.org/
10.6028/NIST.FIPS.186-4

Damian Poddebniak, Christian Dresen, Jens Miiller, Fabian Ising, Sebastian
Schinzel, Simon Friedberger, Juraj Somorovsky, and Jorg Schwenk. 2018. Efail:
Breaking S/M IME and OpenPGP Email Encryption using Exfiltration Chan-
nels. In 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD,
USA, August 15-17, 2018, William Enck and Adrienne Porter Felt (Eds.). USENIX
Association, 549-566. https://www.usenix.org/conference/usenixsecurity18/
presentation/poddebniak

Proton Technologies A.G. 2016 (accessed August 31, 2020). ProtonMail Security
Features and Infrastructure. https://protonmail.com/docs/business-whitepaper.
pdf. (2016 (accessed August 31, 2020)).

Niels Provos and David Mazieres. 1999. A Future-Adaptable Password Scheme..
In USENIX Annual Technical Conference, FREENIX Track, Vol. 1999. 81-91.

Scott Ruoti, Jeff Andersen, Daniel Zappala, and Kent Seamons. 2015. Why Johnny
still, still can’t encrypt: Evaluating the usability of a modern PGP client. arXiv
preprint arXiv:1510.08555 (2015).

Steve Sheng, Levi Broderick, Colleen Alison Koranda, and Jeremy] Hyland. 2006.
Why Johnny still can’t encrypt: evaluating the usability of email encryption
software. In Symposium On Usable Privacy and Security. ACM, 3-4.

Luke Valenta, Shaanan Cohney, Alex Liao, Joshua Fried, Satya Bodduluri, and
Nadia Heninger. 2016. Factoring as a Service. In Financial Cryptography and
Data Security - 20th International Conference, FC 2016, Christ Church, Barbados,
February 22-26, 2016, Revised Selected Papers (Lecture Notes in Computer Science),
Jens Grossklags and Bart Preneel (Eds.), Vol. 9603. Springer, 321-338. https:
//doi.org/10.1007/978-3-662-54970-4_19

Filippo Valsorda. 2016 (accessed August 25, 2020). I'm giving up on PGP. https://
blog filippo.io/giving-up-on-long-term-pgp/. (2016 (accessed August 25, 2020)).

Alma Whitten and J. Doug Tygar. 1999. Why Johnny Can’t Encrypt: A Us-
ability Evaluation of PGP 5.0. In Proceedings of the 8th USENIX Security Sym-
posium, Washington, DC, USA, August 23-26, 1999, G. Winfield Treese (Ed.).
USENIX Association. https://www.usenix.org/conference/8th-usenix-security-
symposium/why-johnny- cant-encrypt-usability-evaluation-pgp-50

[27

[28

[29

[30

(31

[32

(33]

[34

(35]

A KEY VALIDATION STEPS IN
IMPLEMENTATIONS

We detail the key checks implemented by each of the libraries we
reviewed. As shown in Section 3 and Appendix C, these methods are
often insufficient to prevent our attacks, and can actually introduce
further vulnerabilities. For this reason, Appendix D discusses how
to carry out proper key validation.

GPG. GPG validates keys when they are imported into the key-
store, relying on the key checks implemented by libgcrypt.

DSA Given the public parameters g, p, y and private x, expect
y to equal g* mod p. See code at https://github.com/gpg/
libgerypt/blob/libgerypt-1.9.3/cipher/dsa.c#L571.

ElGamal Same as DSA. See code at https://github.com/gpg/
libgcerypt/blob/libgerypt-1.9.3/cipher/elgamal.c#L473.

EdDSA No checks are done. See code at https://github.com/
gpg/libgerypt/blob/libgerypt-1.9.3/cipher/ecc.c#L450.

gopenpgp. Gopenpgp (prior to v2.1.0) performs trial-signature
validation by signing and immediately verifying a Literal Data
packet using the primary key. The data being signed is not con-
stant, but it is deterministic and it depends solely on the signa-
ture creation time. Keys are validated on key decryption. See code
at https://github.com/ProtonMail/gopenpgp/blob/v2.0.1/crypto/key.
go#L.274.

OpenPGP.js. OpenPGP js (prior to v4.10.5) uses the same valida-
tion strategy as gopenpgp. The only difference is that it does not use
CRT-RSA for signing. See code at https://github.com/openpgpjs/
openpgpjs/blob/v4.10.4/src/key/key.js#L405.

https://doi.org/10.1145/3460120.3485257
https://doi.org/10.17487/RFC4880
https://doi.org/10.17487/RFC4880
https://doi.org/10.17487/RFC2440
https://doi.org/10.1007/978-3-030-17259-6_13
https://blog.cryptographyengineering.com/2014/08/13/whats-matter-with-pgp/
https://blog.cryptographyengineering.com/2014/08/13/whats-matter-with-pgp/
https://archive.fosdem.org/2020/schedule/event/dip_securing_protonmail/
https://archive.fosdem.org/2020/schedule/event/dip_securing_protonmail/
https://doi.org/10.17487/RFC6637
https://doi.org/10.17487/RFC2313
https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-rfc4880bis-10
https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-rfc4880bis-10
https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh-04
https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh-04
https://moxie.org/2015/02/24/gpg-and-me.html
https://moxie.org/2015/02/24/gpg-and-me.html
https://doi.org/10.1145/3372297.3417264
https://doi.org/10.1145/3372297.3417264
https://doi.org/10.1007/978-3-319-16715-2_12
https://doi.org/10.1007/11693383_6
https://doi.org/10.1007/978-3-540-24676-3_33
https://doi.org/10.1007/978-3-540-24676-3_33
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.186-4
https://www.usenix.org/conference/usenixsecurity18/presentation/poddebniak
https://www.usenix.org/conference/usenixsecurity18/presentation/poddebniak
https://protonmail.com/docs/business-whitepaper.pdf
https://protonmail.com/docs/business-whitepaper.pdf
https://doi.org/10.1007/978-3-662-54970-4_19
https://doi.org/10.1007/978-3-662-54970-4_19
https://blog.filippo.io/giving-up-on-long-term-pgp/
https://blog.filippo.io/giving-up-on-long-term-pgp/
https://www.usenix.org/conference/8th-usenix-security-symposium/why-johnny-cant-encrypt-usability-evaluation-pgp-50
https://www.usenix.org/conference/8th-usenix-security-symposium/why-johnny-cant-encrypt-usability-evaluation-pgp-50
https://github.com/gpg/libgcrypt/blob/libgcrypt-1.9.3/cipher/dsa.c#L571
https://github.com/gpg/libgcrypt/blob/libgcrypt-1.9.3/cipher/dsa.c#L571
https://github.com/gpg/libgcrypt/blob/libgcrypt-1.9.3/cipher/elgamal.c#L473
https://github.com/gpg/libgcrypt/blob/libgcrypt-1.9.3/cipher/elgamal.c#L473
https://github.com/gpg/libgcrypt/blob/libgcrypt-1.9.3/cipher/ecc.c#L450
https://github.com/gpg/libgcrypt/blob/libgcrypt-1.9.3/cipher/ecc.c#L450
https://github.com/ProtonMail/gopenpgp/blob/v2.0.1/crypto/key.go#L274
https://github.com/ProtonMail/gopenpgp/blob/v2.0.1/crypto/key.go#L274
https://github.com/openpgpjs/openpgpjs/blob/v4.10.4/src/key/key.js#L405
https://github.com/openpgpjs/openpgpjs/blob/v4.10.4/src/key/key.js#L405

RNP. RNP (prior to v0.16) relies on the key checks implemented
by Botan when the key is imported using the rnp_import_keys
function, as done in the RNP CLL%” The checks are fairly extensive,
however, when parsing secret keys, RNP re-derives some public
key parameters, discarding the corresponding corrupted ones. This
can help the attacker import corrupted keys in some cases, as we
explain when relevant.

DSA Given the public parameters g, p, ¢ and private x, Botan
checks that g has order g, then verifies that y = g* mod p
and that g is larger than x. However, RNP re-derives y =
g* mod p beforehand, making the second check always
pass, regardless of whether the attacker correctly guessed
y’. See code at https://github.com/randombit/botan/blob/2.
18.1/src/lib/pubkey/dsa/dsa.cpp#L59.

ElGamal Given the public parameters g,p and private x,
Botan verifies that y = ¢g* mod p. Like with DSA, this
check never fails as RNP sets y = g* mod p when loading
the key. See code at https://github.com/randombit/botan/
blob/2.18.1/src/lib/pubkey/elgamal/elgamal.cpp#L56.

EdDSA No checks are done, but they are also not needed as
RNP re-derives the public point Q from the private param-
eter seed. See code at https://github.com/randombit/botan/
blob/2.18.1/src/lib/pubkey/ed25519/ed25519_key.cpp#L96.

Sequoia. Sequoia does not carry out any key checks.

B FORGING KEY CERTIFICATION
SIGNATURES AND BYPASSING RSA KEY
VALIDATION

B.1 Forging Key Certification Signatures

For each of the algorithms that we target via key extraction attacks
in Section 3, we now describe how to compute private parameters
which can be used by the adversary to generate signatures that
are verifiable given the maliciously chosen public parameters. This
is necessary because the OpenPGP specification mandates that a
key must not be used if its self-signature is missing or cannot be
verified.

DSA When running our first attack, sample an arbitrary s <
q’ coprime to ¢’, then set y’ = 1 and r = [(¢’)"* mod p’].
For the second attack, we can pick any x” € [2,q" — 1], set
y’ = ¢’ mod p’ and sign using ¢’,x’, p’, ¢'.

EdDSA To carry out the faulty signature attack we can pick
any point Q’ # Q on the curve. Hence to forge the binding
signatures we are free to generate a fresh EADSA keypair
(seed, Q’), and sign using the private component.

RSA By construction we know ¢(n’), hence we can find d’ =
e”! mod ¢(n’) and any message m can be signed as s =

1’
m? mod n’.

B.2 Bypassing RSA Key Validation in
OpenPGP js

Here we describe how the RSA key validation used by OpenPGP.js
can be bypassed in a KO attack, at the same time as overwriting

27RNP also exposes the rnp_load_keys function, which carries out no validation. See
code for both functions at https://github.com/rnpgp/rnp/blob/v0.15.1/src/lib/rnp.cpp

14

the key with a key (n’, ¢’) for which the private key d’ is known.
This enables key certification signatures to be forged, and thus
allows mounting a KO attack on a signing or encryption subkey,
through which the actual private key d can be recovered via faulty
signature attack or decryption oracle attack, using the techniques
in Sections 3.3.4 and 3.4.3. This combined attack is applicable to
ProtonMail, as discussed in Section 4.3. The same attack vector
can work against any application which relies on OpenPGP.js and
which performs key validation at a time that is known/predictable
for the attacker.

The attack uses similar ideas to the KOKV attack presented
in Appendix C.2 (and the reader may find it helpful to read that
appendix first).

The OpenPGP.js validation function creates an empty Literal
Data packet and generates an OpenPGP signature over it. Let m be
the data being signed: this includes the Literal Data packet payload,
as well as additional metadata, like the signature creation time ¢.
Let e, n be the public RSA values and d be the secret exponent in
the primary key. The signature is computed over a PKCS#1 v1.5
padded message pad(m) of the form pad(m) = 0x00 || 0x01 ||
OXFF ... OxFF || @x00 || hash_prefix || hash(m), where the
hash function is SHA256 and the byte length of the signed message
equals the public key size, i.e.|pad(m)| = |n|. The signature is then
s = pad(m)¢ mod n which is verified by computing s¢ mod n and
then checking that the resulting padded message pad(m) has the
correct padding format and contains the correct message hash. If
this verification succeeds, the key is considered valid.

We now show how to find n’, e’ to replace n, e such that key
validation will always succeed. Let m; be the message signed when
key validation is performed at time ¢; the value of m; can be pre-
dicted as a function of the signature creation time ¢ (in seconds).
We let pad(m;) denote its PKCS#1 v1.5 encoding of length 512 bits
(including the leading ‘0’ bits). Given the padding format restric-
tions this is nearly the shortest valid padding that is possible. The
adversary next factorises pad(m;), aborting and trying the next m;
if this cannot be done quickly (we assess below how easy this fac-
torisation is to carry out). The adversary then uses trial division to
look for small factors of both pad(m;) — 1 and pad(m;) +1, aborting
and going back to factoring the next m; if it does not find co-prime
factors fy and f= of pad(m) — 1 and pad(m) + 1, respectively, such
that f = f; - f~ has between 8 and 16 bits. Once successful, the
adversary sets n’ = pad(m;) - f and sets e’ to be any odd value,
e.g. the commonly-used e’ = 65537. Choosing n’ in this way (with
factor f of 8-16 bits in size) ensures that the selected encoding
pad(m;) is PKCS#1 v1.5 compliant.

We claim that, with this choice of (n’, e’), message m; will pass
signature validation no matter the value of the original private
key d. To see this, note that pad(m;)% = pad(m;) = 0mod
pad(m;), while pad(m;) = 1 mod f; also implies pad(mt)de/ =1=
pad(m;) mod fi.Finally, pad(m;) = —1 mod f- implies pad(mt)del =
(-1)4¢" = -1 = pad(m;) mod f- (here we use the fact that e’ is
odd). Combining these three modular equations, we obtain:

pad(m;)® = pad(m;) mod n’.
This equation implies signature validation of m; with key (n’, ¢’)
will succeed.

https://github.com/randombit/botan/blob/2.18.1/src/lib/pubkey/dsa/dsa.cpp#L59
https://github.com/randombit/botan/blob/2.18.1/src/lib/pubkey/dsa/dsa.cpp#L59
https://github.com/randombit/botan/blob/2.18.1/src/lib/pubkey/elgamal/elgamal.cpp#L56
https://github.com/randombit/botan/blob/2.18.1/src/lib/pubkey/elgamal/elgamal.cpp#L56
https://github.com/randombit/botan/blob/2.18.1/src/lib/pubkey/ed25519/ed25519_key.cpp#L96
https://github.com/randombit/botan/blob/2.18.1/src/lib/pubkey/ed25519/ed25519_key.cpp#L96
https://github.com/rnpgp/rnp/blob/v0.15.1/src/lib/rnp.cpp

Now, since n’ = pad(m;) - f and, by assumption, the adversary
successfully factored pad(my), it can compute ¢(n’) to then find
d’ = e¢’~! mod ¢(n’), which in turn allows creating a key certifica-
tion signature that will verify using (n’, ¢’). Note that, due to the
non-standard form of n’, only signatures created on values pad(m)
that are co-prime to n’ are guaranteed to successfully verify, but in
the attack, the adversary has flexibility in choosing the message to
be signed when creating the key certification signature.?® Note also
that the above computation can all be carried out offline, ahead of
the actual attack.

As initially stated, the end goal of the attacker is not just to bypass
key validation, but to be able to complete e.g. a faulty signature
attack once the key is used for signing. To do so, after overwriting
the primary key packet using (n’, e’), it suffices to add a subkey
that contains the original encrypted primary key material, and
corrupt the public parameters as covered in Section 3. Whenever
the victim signs using the corrupted key, the subkey will be used,
as OpenPGP.js gives preference to signing using subkeys over use
of the primary key.

Experimental results. To construct (n’, e’), the attacker must be
able to factor pad(m;) of size 512 bits. According to [33], 512-bit
numbers are factorable with moderate computational effort in the
worst case (where the number is a product of two primes): [33]
reports a cost of $75 and 4 hours of Amazon Elastic Compute time
(2016 figures). So, in principle, with enough computational effort,
every m; can be used to try and build f.

However, it turns out that many numbers are much easier to
factor than this. We used SAGE’s built-in factor method, running
on a MacBook Pro 2019. We generated 500 values of pad(m;) and
set a time limit of only 30 seconds to factor each value. We were
able to factor 195 (39%) of the candidate values. For 160 (32%) values
we were then able to find suitable primes f- and f; to build f.?° We
conclude that at least 32% of messages m; can be used to mount the
attack. Based on additional experiments (in which we just searched
for suitable fy, f_), this figure could be increased to approximately
80% by putting more computational effort into the factoring step.

In the context of ProtonMail, for example, this means the adver-
sary can target at least 1 in 3 user logins. We remark that pad(m;)
is key- and user-independent, and the constructed e’, n” can be used
to target any user who has RSA keys and is logging into the web
app at time ¢. Note that ¢ is the user’s local device time, and it is
not controllable by ProtonMail, but it can still be predicted: the
server could check for the client time skew based on e.g. diagnostic
messages sent from the web app.

C KEY OVERWRITING ATTACKS
EXPLOITING KEY VALIDATION (KOKYV)

We have seen how some OpenPGP libraries carry out checks in-
tended to validate key material before use. Such checks are not
always sufficient to prevent the attacks we have described. Further,

28In standard RSA, where n = pq is a product of two primes, the co-primality condition
is not needed, and any padded message can be signed. This no longer holds when, for
example, n has a repeated prime factor, as can arise in our setting.

2 Allowing f- and f; to be composite (but still coprime) would give the attacker more
flexibility, hence an even larger number of pad(m;) could be targeted; we did not
implement this extension.

15

as we now show, some key validation steps open up new vulnerabil-
ities in conjunction with key overwriting. We refer to these attacks
as Key Overwriting attacks exploiting Key Validation (KOKV at-
tacks). Since the key validation steps used are library specific (and
not specified in the OpenPGP specification), all the discussion in
this appendix is library-specific.

C.1 Exploiting ElGamal and DSA Key
Validation to Recover the Private Key in
GPG, OpenPGP.js and gopenpgp

Direct Key Validation. Whenever an implementation validates
ElGamal or DSA keys by verifying that y = ¢ mod p without also
checking the order of g, then the key validation function effectively
acts as an oracle that can be exploited to carry out a key recovery
attack by reusing the idea from Section 3.4.1 to extract private keys
bit-by-bit.

Recall that, since we are still in the context of key overwriting
attacks, the adversary controls the public values p, g, y (as well as ¢
in the DSA case). The adversary begins by selecting a prime p’ of
the form 27k + 1 and of the appropriate size. Here is the bit-length
of the exponent x, which is the target for our attack. We write
X=x0+x1-2+x2 22+ -x,_12""1. The adversary then finds g,
of order 2! mod p’. It sets g; = (gt)zH mod p’ so g; has order 2!
mod p’.

To recover bit xo, the adversary overwrites p, g,y with p’, g1, 3’
where y’ = g;° = 1. Verification for these parameters succeeds if
and only if g7 = y” mod p. Since g1 has order 2, this condition is
equivalent to g;* =y’ = g(l) mod p. Hence key validation succeeds
if and only x¢ = 0. So with the result of one key validation trial, the
adversary recovers xo.

To recover bit x1, the adversary now overwrites p, g,y with
p’.92.y’ where y’ = g,". Now key validation succeeds if and only
if gy =y’ = g," mod p. But g has order 4, so this condition is
equivalent to g;°+2x1 = g," mod p, and we see that key validation
succeeds if and only x; = 0.

Proceeding in this way, replacing g with g; and y with g;
at stage i, we can recover all the bits of x of bit-length t sequentially,
using ¢ key overwrites and ¢ key validation queries.

Indirect Key Validation via Trial Signature. The DSA key veri-
fication mechanism implemented by OpenPGP.js and gopenpgp
involves using the private key to generate a signature, and then
attempting to verify the signature using the public key. The goal
is again to confirm that the public parameter y corresponds to the
secret x. However, this key validation approach can also be ex-
ploited to recover the private key. We use a classical small subgroup
approach. The adversary can recover the partial secret x mod g’
for an arbitrary small prime g’ as follows:

(1) Pick two primes p’,q’ such that ¢’ is small and divides
p’—landfind g’ € Z;, with order ¢’.

(2) Select x” € [1,¢’] and set y’ = ¢’ mod p’. Query the key
validation oracle on (p’,¢’,¢’,y’). If validation succeeds
then we can infer that x” = x mod ¢’. Otherwise, sample
the next x’ and retry.

Xo+X12+4...Xi—1 .2i-1

Let G be the group generated by the original g (in ElGamal, |G| =
p — 1, whereas in DSA |G| = g). By running the steps above us-
ing different primes g; such that []; ¢/ > |G|, then the adversary
finds different shares of the secret exponent x mod g; which can
be combined using the Chinese Reminder Theorem to get the full
value of x mod p. The expected number of trials to find the correct
x’ in step 2 is q’/2. For this reason, the adversary wants to pick
q; that are as small as possible. The simplest strategy is to select
the primes sequentially starting from 2. For example, to recover
a 2048-bit exponent, the adversary needs to use all primes up to
1481, which results in about 78k key validation queries. However,
note that for 2048-bit ElGamal keys, GPG samples secret exponents
that are only 338 bits long, while the secret scalars of ECC keys are
always shorter than 521 bits. In these cases, it suffices to submit
less than 7k queries on average. What this translates to in practice,
in terms of attack cost, depends on the specific application, as we
explain below.

Vulnerable Implementations. GPG, gopenpgp and OpenPGP.js
expose the key validation oracle.

GPG (through libgcrypt) validates ElGamal and DSA keys by
solely checking that y = g*¥ mod p, and is thus vulnerable to our
first bit-by-bit key extraction attack for both key types.

OpenPGP.js and gopenpgp validate DSA primary keys via trial
signatures. This allows an adversary to run the small subgroup
attack provided above. OpenPGP.js and gopenpgp do not directly
validate ElGamal keys since they are always encryption-only sub-
keys. Still, these keys can be targeted via cross-algorithm attack by
converting them into DSA keys. EDDSA, ECDSA and ECDH keys
can also be compromised in this way.

Practicality of the Attack. The feasibility of this DSA/ElGamal
attack depends on whether the adversary can query the key valida-
tion oracle, and with what frequency. While a malicious ProtonMail
server could have managed to carry out the attack in principle, it
is unlikely that such an attack would go undetected, or could be
carried out within a reasonable time frame. For more details, see
Paragraph Access to the Validation Oracle in ProtonMail in Appen-
dix C.2

Countermeasures. To avoid this class of attacks, validation must
be performed as described in Section 5 and Appendix D.

C.2 Exploiting the RSA Key Validation in
OpenPGP.js to Recover the Private Key

If textbook RSA (as opposed to CRT-RSA) is used for signing, then
trial signature validation exposes an oracle that potentially allows
to run a small subgroup attack to recover the RSA secret exponent.
Signing using CRT-RSA avoids the attack as the RSA public pa-
rameters controlled by the adversary are not used during signing
operations.

Recall that OpenPGP.js (prior to v4.10.5) relies on trial signature
validation. We now detail how its RSA key validation can be ex-
ploited. The OpenPGP.js trial signature function creates an empty
Literal Data packet and generates an OpenPGP signature over it.
Let m be the data being signed, let e, n be the public RSA values
and d be the secret exponent in the primary key. The signature
is computed over a PKCS#1 v1.5 padded message pad(m) of the

16

form pad(m) = 0x00 || 0x@1 || OxFF ... OxFF || 0x00 ||

hash_prefix || hash(m), where the byte length of the signed mes-
sage equals the public key size, i.e.|pad(m)| = |n|. The signature is
then s = pad(m)? mod n which is verified by computing s¢ mod n
and then checking that the resulting padded message pad(m) has
the correct padding format and contains the correct message hash.

Let pad(m) have order ord,(pad(m)) in Z;, . Then signature
verification succeeds for this m if (and with high probability, only if)
ed = 1 mod ordy(pad(m)), which means that the key is considered
valid provided e is the inverse of d modulo the order of the signed
message. In other words, the validation function acts an oracle that
leaks whether the given e is the inverse of d modulo ord, (pad(m)).
If ord, (pad(m)) is known and e and ord,(pad(m)) are co-prime,
then through the Extended Euclidean Algorithm one can easily
compute d = e~! mod ordy(pad(m)). Note that for most m, we
have ord,(pad(m)) = ¢(n), and given a legitimate RSA public
key, ¢(n) is secret and hard to compute, hence the oracle cannot
normally be exploited to find d given e.

However, we consider a KOKV adversary that can control the
public parameters (n,) being validated, and can also observe the
outcome of the validation function (i.e. it can access the oracle
described above). We also assume that the adversary knows the
message pad(m) that will be signed - this is a reasonable assump-
tion as we explain later. In this setting, the adversary can partially
recover d using a modification of our RSA decryption attack from
Section 3.4.3, as follows:

(1) Let p be a small prime of the form p = 2q+1 where q is also
prime.* Check that pad(m)? = 1 mod p. If this condition
holds, set n’ = pad(m) - p where now pad(m) is a PKCS#1
v1.5 padding having an adversarially-selected bit-length k’
(not necessarily the same as that of n). Otherwise, sample
different p, g and retry. Thanks to our precise choice of
p, n’ will have the correct size so that the PKCS#1 v1.5
padding has the right format when reduced mod n’.
Foreach e’ € [1,g—1], submit (n’, ¢”) to the key validation
oracle. Validation will succeed if and only if de’ = 1 mod gq.
If no value of e’ in the given range works, then it must be
that d = 0 mod g; this can be determined after all g — 1
possible values of e’ have been tried.

The adversary repeats the process with different p;, g; (the tar-
geted pad(m) may also change) and combines the resulting d mod
qi using CRT to reconstruct d in full.

It is possible to recover d mod g through the oracle because by
construction, ged(p, pad(m)) = 1 hence, by the CRT, we have that
pad(m)?¢" = pad(m) mod n’ is equivalent to the pair of conditions

pad(m)9€’ = pad(m) mod pad(m)
pad(m)?€’ = pad(m) mod p

The first condition always holds as both sides are equal to 0 mod
pad(m), whereas the second condition holds if and only if de’ =
1 mod g, since pad(m) lies in the subgroup of Z;, of order g.

To end up with n’ of proper byte length so that pad(m) mod n’
is correctly padded, the adversary can pick p to be between roughly
8 and 16 bits in size. Using small p (and so small q) lowers the cost

30p, q in this context have nothing to do with the secret RSA factors of the original
modulus 7.

of each stage of the attack, since the average number of queries
needed to recover d mod g is q/2, but entails using more primes. For

q-~ 2ba and n ~ 2% the attack needs 72 distinct primes. Assuming

all the primes used have the same bit-size bq (for simplicity), the

total average number of queries is then ~ 2bg=1 Z—" For example,
q

with b, = 2048 and bq = 13, we get a cost for the full attack of
approximately 2'2 - 2048/13 ~ 645k queries. This can be reduced
to 78k queries by using more carefully chosen primes of smaller bit
sizes.

Practicality of the Attack. There are a number of things that
make this attack feasible in OpenPGP.js: firstly, for key validation,
the primary key is always used for signing, without first checking
its self-signature. Secondly, the signed message is deterministic
and it only depends on the signature creation time. Hence, if the
time is predictable, so is pad(m) and the adversary can construct n’
accordingly. In other words, if the adversary knows or guesses at
what (client) time key validation will be run, then they can compute
the corresponding pad(m) which will be used. In the context of the
ProtonMail web app, for instance, the keys are validated immedi-
ately after being downloaded from the server, hence the latter can
easily guess a set of possible pad(m) values that might be signed.
However, in the specific case of ProtonMail, a malicious server
is better off trying to bypass validation to mount a KO attack as
covered in Appendix B.2 and Section 4.3, since running the KOKV
attack just described is slower and more likely to be detected by
the user, due to the need to compromise multiple login sessions.

D EFFECTIVE KEY VALIDATION STEPS

We detail the key checks to be carried out for each algorithm to
protect against the key overwriting attacks in this paper. While
these checks are sufficient for this purpose, some of them intro-
duce a considerable performance overhead, hence we believe these
should be used only as a short-term solution, until standardisation
of a specification-level fix, like the one based on AEAD that we
proposed in Section 5.

Some of the necessary checks can be carried out on the pub-
lic parameters directly, whereas others involve secret parameters.
Hence, in the latter case, key validation needs to be performed on
a decrypted private key.

RSA Validation in RSA is not always necessary, depending
on the specific signing/decryption algorithm used: if the
public modulus 7 is used for signing or decrypting, then
it’s value should be re-derived from the secret factors p, q
to verify that n = pq. This is not an expensive check, hence
we would suggest performing it regardless of the RSA al-
gorithm variant employed.

EdDSA The point Q in the public key can be re-derived from
the secret seed, through scalar multiplication.

DSA DSA operations are secure provided the public group is
strong, which is the case if the generator has large prime
order. Simply checking that y = g¥ mod p is not sufficient
to prevent all of our attacks, and it actually introduces
an additional vulnerability, as discussed in Appendix C.
Instead, for the parameters to be considered secure, the
following checks should be made:

17

(1) p is prime

(2) qis prime®!' and larger than 160 bits

(3) gdividesp —1

(4) 1<g<pandg?=1modp

(6) y=g" mod p
Note that it is important that check (5) is performed last, to
avoid enabling a small subgroup attack through the valida-
tion process, as described in Appendix C. Conveniently, the
first 4 checks only involve public key parameters, hence
they can be performed without decrypting the private key.

Recall that despite being a legacy algorithm, validating
DSA keys is important as attacks against them can be used
to indirectly compromise ECC keys.

ElGamal ElGamal validation is complicated by the fact that
the OpenPGP standard does not mandate the use of a sub-
group of prime order g — on the contrary, g may be gen-
erator of the full group, and thus have full (even) order
p — 1. As a result, there is no efficient way to confirm the
actual order of g. Still, we want to make sure that it is
large enough to make small subgroup attacks infeasible.
To achieve this, one solution, albeit expensive, is to check:

(1) ¢' # 1 mod p for all values i € [2, t] and large enough

t

(2) 1<g<pandy=g* modp
Again, these checks must be performed in the stated order.
In step (1), the larger ¢ is used, the more difficult a small
subgroup attack becomes. For example, we can “force” the
adversary to use primes of at least 16 bits in its attack by
setting ¢t = 219 — 1, so that more than 500k queries would
be required to recover a 256-bit secret. However, checking
the order of g in this way is expensive, since every number
up to a certain size must be checked in step (1).

As for DSA, FlGamal validation is needed to prevent
attacks on ECC secret keys via a cross-algorithm attack. For
reasons of efficiency and security, we believe that OpenPGP
implementations should consider dropping support for
ElGamal, and that the algorithm should be deprecated by
the OpenPGP specification.

31For testing both p and q it is important to use a robust primality test since we are in

the adversarial setting [3, 9, 22].

	Abstract
	1 Introduction
	2 Background on OpenPGP
	2.1 Long-Term Keys
	2.2 OpenPGP Implementations

	3 Private Key Extraction via Key Overwriting
	3.1 Threat Model
	3.2 Practical Considerations
	3.3 KO Attacks Exploiting Faulty Signatures
	3.4 KO Attacks Exploiting Decryption

	4 Targeting OpenPGP Applications
	4.1 Email Clients
	4.2 FlowCrypt
	4.3 ProtonMail

	5 Countermeasures
	6 Conclusions
	References
	A Key Validation Steps in Implementations
	B Forging Key Certification Signatures and Bypassing RSA Key Validation
	B.1 Forging Key Certification Signatures
	B.2 Bypassing RSA Key Validation in OpenPGP.js

	C Key Overwriting Attacks Exploiting Key Validation (KOKV)
	C.1 Exploiting ElGamal and DSA Key Validation to Recover the Private Key in GPG, OpenPGP.js and gopenpgp
	C.2 Exploiting the RSA Key Validation in OpenPGP.js to Recover the Private Key

	D Effective Key Validation Steps

